

COMSOL CONFERENCE Tokyo 2013 2013年12月6日, 東京

MEMS技術を用いたがん診断用マイクロ濃縮器の 定量分析による設計

Quantitative Analysis Design of MEMS Based Micropreconcentrator for Cancer Diagnosis

> 李 相錫 鳥取大学大学院工学研究科

Outline

- Introduction
- Design
 - Microstructure
 - Array
- Simulation
 - Flow velocity simulation
 - Particle tracking simulation
- Fabrication
- Conclusion

Motivation

Breast cancer screening

- Mammography
- Ultrasound
- MRI
- Clinical breast examination

Disadvantage and risk

- Exposure of the X-ray
- Pain
- Oversight
- High cost

Breath Analysis

Ref. M.Phillips, et.al., "Volatie biomarkers in the breath of women with breast cancer" J.Breath Res. 4(2010) 026003

Introduction

• The cancer diagnosis by the analysis of volatile organic compounds (VOC) in breath

- Advantages of introducing a micropreconcentrator (microPC)
 - Increase of contact surface for biomarker
 - Reduce the concentrator

Performance improvement of MEMS based microPC through quantitative analysis

Design of microstructure shape

 \bigcirc

5

Design of array

Regulated configuration

Staggered configuration

Optimization of microstructure by simulation

- Simulation tool : COMSOL Multiphysics
- Simulation conditions
- Flow velocity simulation
 - Fluid : N₂
 - Initial velocity :1 m/sec
 - Pressure of outlet : 0 Pa

- Particle tracking simulation
 - Particle numbers : 500
 - Drift time : 0.1 sec
 - Adsorbed velocity: $1.5\times10^{\text{-8}}$ m/sec

Particle tracking simulation (blue dot ; particle)

Optimization of microstructure by simulation

Simulation results

 \mathcal{C}

Flow velocity distributions by microstructure shape and array

model A

model B

model C

Optimization of microstructure by simulation

Simulation results

Quantitative analysis by particle tracking simulation

- Model C showed the best performance
- Model C could be showed 50% better performance than model B

Conclusions

- We proposed new microstructure and its array to improve micropreconcentrator performance.
- Design study was performed by quantitative analysis, which gives explicit and clear criterion on the evaluation.
- Model C (staggered configuration with Type A microstructure) showed the best performance for all simulation studies.

- We fabricated micropreconcentrator based on MEMS technology .
- As a future work, we will measure and evaluate our fabricated device.