

The Electrical Impedance Image Reconstruction Using COMSOL MULTIPHYSICS

Kuo-Sheng Cheng, Ph.D.

Department of Biomedical Engineering, Institute of Oral Medicine, National Cheng Kung University

Medical Imaging & Instrumentation Laboratory BME, NCKU

INTRODUCTION

- Swanson(1976) proposed the first frontal plane impedance image technique
- Henderson and Webster (1978) designed the impedance camera

INTRODUCTION Electrical Impedance Tomography

Problem Description

- Current pattern plays an important role in EIT. It may affects

 Spatial resolution
 Computation complexity

 Information needed for image reconstruction

 The applied current pattern
 - > The measured boundary voltage pattern

Introduction

• Current patterns

- Adjacent-pair current patterns
- Opposite-pair current patterns
- Trignonometric current patterns
- Reconstruction algorithms
 - NOSER
 - Backprojection

EIT4 (BME, NCKU)

	Specification					
Data Acquisition	Number of electrodes	32				
	Carrier frequency	Multi-Frequency				
		1 kHz-1 MHz				
	Current channels	32				
	Voltage channels	1				
	Measurement method	2-electrode,				
		differential mode				
	Resolution	16 bits				
	Current pattern	Sinusoidal current patterns				
	Sampling rate	500 kHz				
Forward solver	FEM					
Inverse solver	Backprojection					
Image type	Dynamic					

RESEARCH FRAMEWORK

Filter Backprojection Algorithm

- To design torso model
 To build FEM model

 using COMSOL
- 3. To apply current patterns
- 4. To compute voltages
- 5. To find the equi-potential lines

DSP implementation & System testing

DSP implementation & System testing **Inverse problem**

Given boundary voltage V_n And boundary current density J_n

Inverse solver

Find the internal resistivity Distribution

Filter Backprojection Algorithm

DSP implementation & System testing

TMS320C6713
-32-bit command/cycle
-High efficiency
-Floating point
High speed

X bits lk Hz l: 1 0.2 0.4 0.6 0.8

JTAG

METHODS & MATERIALS

Finite Element Method in EIT
➤ The governing equations
∇ · J̄ = 0 J̄ = σ Ē
Ē = -∇U
⇒ ∇²U = 0 with J̄ • n̂ = -σ₀ ∂U/∂n = -j
➤ In a polar coordinate system

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 U}{\partial \theta^2} = 0 \quad \& \quad \sigma_0 \frac{\partial U}{\partial r} = j$$

 \overline{J} : current density \overline{E} : electric field σ : conductivi ty \hat{n} : outward unit normal vector

METHODS & MATERIALS

• TI C6713 DSK

- DSP &PC link: 6713 DSK Diagnostics Utility v3.1 (USB)
- Developmental surrounding: CCStudio 3.1
- Language: C Langue
- Compiler: CCStudio 3.1

RESULTS & DISCUSSIONS

SINUSOIDAL CURRENT PATTERN SIMULATION

• Equi-potential lines computation with COMSOL

Homogenous

Non-homogenous

SINUSOIDAL CURRENT PATTERN SIMULATION

• Equi-potential lines computation with COMSOL

Homogenous

Non-homogenous

SIMULATION & RECONSTRUCTION

image3				
File Patterns Algorithm				
Current Patterns				
O Adjacent-pair current pattern			-	
O Opposite-pair current pattern		F		1
⊙ Trignonometric current pattern				
		L.	. AB	6- A
Reconstruction Algorithm			1.000	C
ONOSER		12		
Backprojection	Va	ilue(1,;)	Value(2,;)	Value(3;;)
	1 0.063	826030	-0.01788890	0.07137704 🖍
	2 -3.2	7821E-10	-0.00725380	. 0.027381449
Curront	3 -0.14	805436	-0.06987867	. 0.050592349
1mA	1 0.20 <	1	0 04 704 670	> 2 20097E 4
Frequency(kHz)				

Spatial resolution= r_a/r_b • Sinusoidal current pattern Spatial resolution = 0.25

 Adjacent-pair current pattern

Spatial resolution = 0.45

CONCLUSION

- Sinusoidal current pattern is better than adjacent current patterns in resolution.
- The image reconstruction time needed for the sinusoidal current pattern is the same as the adjacent current pattern.
- DSP based impedance image reconstruction system works well in the simulation experiments.

Thanks for your attention