

Modeling deep-bed grain drying using Comsol Multiphysics©

Ramadan ElGamal^{a,b}, Frederik Ronsse^a, Jan G. Pieters^a

^a Department of Biosystems Engineering, Ghent University, Belgium

^b Department of Agricultural Engineering, Suez Canal University, Egypt

Outline

50 Introduction

Modeling

Results

So Conclusion

Introduction

✓ Various mathematical models have been proposed to simulate grain deep-bed drying.

The main differences between the simulation results of the deep-bed and the experimental data are due to (Zare and Chen, 2009):

- (1) The simplification **assumption** made when building the mathematical model,
- (2) The lack of accuracy of the thin layer grain drying equation,
- (3) The inadequacy of the precise equation for estimating the volumetric heat transfer coefficient of paddy in a packed bed,
- (4) The errors in measurement of input parameters and actual performance of the grain dryer.

Introduction

Study Objective:

The main objective of the present study was to develop a simulation model of the deep-bed drying for rough rice.

- developing a correlation for the convective heat and mass transfer coefficients as a function of drying air flow rate.
- considering a different approach to characterize the drying of rice in a thin layer.
- developing a deep-bed model assuming no thermal equilibrium between drying air and grain in the bed.

Meat and mass transfer coefficients determination

$$h_c = -2130.4G^4 + 2928.8G^3 - 1541.8G^2 + 455.7G + 3.85$$
 (4)

$$h_m = -2.068G^4 + 2.85G^3 - 1.50G^2 + 0.445G + 0.0036$$
 (5)

hc heat transfer coefficient (W·m⁻²·K⁻¹)

 h_m mass transfer coefficient (m·s⁻¹)

Le Lewis number

 α Thermal diffusivity (m²·s⁻¹)

G Air flow rate $(kg \cdot m^{-2} \cdot s^{-1})$

Transport equations Modeled Deep-bed

501 Using Comsol Multiphysics®

Comsol Multiphysics® v4.3b was used for all simulations

Model Validation

- ➤ The experimental results of **Zare et al.** (2006) were used for validation.
- \triangleright The simulation model performance was determined by calculation of the **relative error** (*E*) and **mean relative deviation** (*MRD*) as follows:

$$E = \frac{\left| M_j - \widehat{M}_j \right|}{\widehat{M}_j} \times 100 \quad (10)$$

$$MRD = \left[\frac{1}{n} \sum_{j=1}^{n} \left(\frac{M_j - \widehat{M}_j}{\widehat{M}_j}\right)^2\right]^{0.5} \times 100 \tag{11}$$

where M_j and \widehat{M}_j indicate the jth experimental and predicted moisture contents of the grain (dry basis), respectively, and n is the number of measurements in each experiment.

Results

Experimental (exp) and predicted (sim) grain moisture content with drying time at different depths at $\theta = 50$ (°C) and G = 0.22 (kg·m⁻²·s⁻¹).

Results

Experimental (exp) and predicted (sim) grain moisture content with drying time at different depths at θ = 45 (°C) and G = 0.22 (kg·m⁻²·s⁻¹).

Results

Table 1. results of validation tests for the predicted moisture content

Run	Inlet air temperature (°C)	Mass flow of air (kg·m ⁻² ·s ⁻¹)	MRD %	
			Depth, 9 cm	Depth, 18 cm
1	50	0.22	1.15	2.31
2	45	0.22	2.07	1.47
3	50	0.16	1.00	3.13
4	45	0.16	2.04	1.27

Conclusion

- The developed model was used successfully for describing the coupled heat and mass transfer inside a deep-bed of rice during drying.
- The model prediction of the grain moisture content at different locations in the bed was verified using experimental data from literature and was found to be satisfactory.
- Comsol Multiphysics is a useful tool to modeling the heat and mass transfer processes during grain drying.

Thanks for your attention

Ramadan.ElGamal@UGent.be