

Pros and Cons of Running Comsol Touch-Sensor Simulations on

Amazon Web Services

Author: A. Gourevitch,
198 Champion Ct. San Jose CA 95134, alxg@cypress.com

Abstract: We report an implementation of

parallel computing on Amazon Web Services

(AWS) for touch-sensor modeling. Comsol

Multiphysics was used to simulate an

electromagnetic field distribution in a capacitive

sensor assembly. Multiple Comsol jobs were

deployed on separate AWS instances and were

executed in parallel. The simulation results

indicate that implementation of parallel

computing for Comsol simulations can

significantly reduce the computational time

required for optimization of capacitive touch

sensor patterns.

Keywords: Touch-sensors, Amazon Web

Services.

1. Introduction

Capacitive sensing as a human-device interface

is becoming increasingly popular in many

consumer products such as laptop track pads,

touch-screen tablets, computer monitors and

smart phones, but it is certainly not limited to

these applications. A human finger motion is

detected by a capacitive touch-screen. Touch-

controllers interface touch-screens analog and

digital device circuitry and process the detected

signals using firmware algorithms. Cypress

Semiconductor TrueTouch microcontrollers can

detect the motion of multiple fingers in the

presence of up to 40Vpp AC noise [1-3].

Touch-screens consist of one or two transparent

conductive layers patterned to produce

horizontally and vertically connected electrodes

that form a grid structure. A touch object is

sensed at the grid intersection.

The touch-screen patterns can be laid out in

indium tin oxide (ITO), silver nanowire or metal

mesh layers deposited or laminated on glass or

polyethylene terephthalate (PET) substrates.

These layers are embedded in the sensor stack-

up. A capacitance measurement circuit is

coupled to the sensors to read the output signal.

Generally the touch-screen controller is mounted

on a flexible printed circuit (FPC) that contains

all necessary external components and

interconnecting circuitry for the touch-screen

system.

Figure 1. Single-layer touch-sensor stack-up

A typical touch-sensor stack-up is shown on

Figure 1. The patterned ITO layer is sandwiched

between a liquid crystal display (LCD) and a

cover glass. Yellow and blue square electrodes

connect together producing horizontal and

vertical routes. When a human finger is touching

the cover glass surface it distorts the

electromagnetic field in the sensor assembly.

This touch is measurable as a change in a mutual

capacitance between horizontal and vertical

electrodes [4].

2. Use of COMSOL Multiphysics for

optimization of touch-sensor design

Comsol Multiphysics was used to simulate an

electrostatic field distribution inside of the touch-

sensor assembly. The 3D touch-sensor model

was built using Comsol internal geometry editor.

The model includes sensor electrodes and stack-

up layers. The Comsol AC/DC module was used

to simulate electromagnetic field distribution in

the 3D assembly and estimate the coupling

capacitance between the selected electrodes, see

Figure 2. The Comsol model was parameterized

to enable sensor optimization without editing the

model geometry.

Figure 2. 3-D Comsol touch-sensor model

Sensor design optimization requires running

numerous independent simulations with different

pattern element shapes and dimensions. These

simulations can be considered as a sequence of

jobs independently varying one or more model

parameters. The jobs can be sequentially

executed on a single computing node or can be

deployed as an array of jobs that share the same

executable and resource requirements, but have

different input parameters, see Figure 3. By

running the jobs in parallel, the Comsol tool

generates an accumulated simulation data set in

one shot without waiting for a sequential job

execution. This computational procedure was

realized on AWS cloud.

Node 01: parameters = set1

Node 02: parameters = set2

Node 03: parameters = set3

Node N: parameters = setN

Job

submission

Accumulated

simulation

results

Figure 3. Running EM simulations as parallel

jobs

3. Comsol simulations on AWS

The Comsol computational jobs were deployed

on AWS and performance improvement was

benchmarked with a premise DELL T5500

desktop.

AWS provides a collection of remote computing

services that together make up a cloud

computing platform [5]. The main advantage of

AWS is vertically (instance type) and

horizontally (cluster) computational resource

scalability. Comsol simulations were tested on a

single AWS instance and on a cluster. Table 1

summarizes resources of cc2.8xlarge and

cr1.8xlarge instances used in this work. The

cluster solution architecture is shown in Figure 4.

Table 1: Resources of the AWS instances

CC2 and CR1 Instances are backed by 2 x Intel

Xeon E5-2670 processors, eight-cores with

hyper threading. Instances launched into the

same cluster placement group are placed into a

non-blocking 10 Gigabit Ethernet network.

Figure 4. AWS cluster architecture

Several touch-sensor models were run on AWS

instances and on a DELL T5500 desktop. The

T5500 machine has 48Gb RAM, Intel® Xeon®

CPU X5680 @3.33 GHz (2 processors) total 12

CPU, 64-bit operating system. Significant

improvement was observed for a large

simulation project with more than 30 million

mesh nodes. We were not able to complete this

Instance type vCPU
RAM

(GiB)
Network

cc2.8xlarge 32 60.5 10 Gb

cr1.8xlarge 32 244 10 Gb

job on the T5500 machine within 2 hours of run

time (only several percent of the job was

completed) vs 30 minutes required to fully

complete the job on AWS cr1.8xlarge instance.

We also tested single job performance running

on distributed resources. The Comsol touch-

sensor model was deployed on a 3-node cluster

and on a single instance and simulation time was

compared. The cc2.8xlarge instance was used in

the benchmarking experiment. We observed

almost 3X simulation time increase for the

distributed job vs stand alone one. The

simulation time increases due to

intercommunications between the shared nodes.

4. Conclusions

We report an implementation of Comsol touch-

sensor simulations on AWS. Multiple Comsol

jobs were deployed on separate AWS instances

and were executed in parallel. The simulation

results indicate that implementation of the

parallel computing for Comsol simulations can

significantly reduce computational time required

for optimization of capacitive touch sensor

patterns.

5. References

1. http://www.cypress.com/

2. M. Ribeiro and J. Carey, 5th Generation

Touchscreen Controller for Mobile Phones and

Tablets, Hot Chips Symposium 2013

3. J. Carey, EE Times, Noise wars: Projected

capacitance strikes back against internal noise

(2011)

4. L.K. Baxter, Capacitive Sensors: Design and

Applications, John Wiley and Sons (1996).

5. http://aws.amazon.com/

6. Acknowledgements

We would like to acknowledge AWS HPC team

and especially Dougal Ballantyne, a Solutions

Architect with Amazon Web Services LLC

assisted with the cloud formation architecture.

