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Abstract: One may cut the unbounded domain
exterior to a solid body into two parts that share
a common boundary in the form of a sphere of ra-
dius a, which I will call the Reflecting Sphere. The
Near Exterior is exterior to the solid body but inte-
rior to the Reflecting Sphere while the Far Exterior
is exterior to both. Suppose the velocity field in
the Far Exterior has a velocity potential, �. In the
1840s Kelvin showed that the change of position
variable r ! q defined by r/r = q/q with rq = a2

(in which r = |r| and q = |q|) maps the Far Ex-
terior to an Inverted Far Exterior (the interior of
the Reflecting Sphere). Furthermore, if r 7! � is a
solution of Laplace’s equation in the r-coordinates
then q 7! �, in which � = (q/a)�, is a solution of
Laplace’s equation in the q-coordinates. Bound-
edness of both the Near Exterior and Inverted Far
Exterior enables meshing in both geometries and si-
multaneous solution of the relevant partial di↵eren-
tial equations provided one applies suitable compat-
ibility conditions on the Reflecting Sphere. This pa-
per develops techniques for accomplishing this task,
presents a computational example, and compares
ther results with an analytical solution.
Keywords: Unbounded domains, Harmonic func-
tions, Kelvin Inversion, Numerical dipole

1. Introduction

1.1 On Kelvin Inversion and the Kelvin In-
version Theorem. Let a denote a given length
scale. If r =

�!
OP is the vector position of a point

P relative to an origin O and r := |r| then the in-
equality r > a describes the unbounded exterior of a
sphere of radius a. Consider the change of variable
r 7! q defined by r/r = q/q, in which q =

�!
OQ is

the vector position of a point Q relative to the origin
O, q := |q|, and rq = a2. Then a is the geometric
mean of the lengths r and q. In particular, if r > a
we have q < a < r. The change of position variable
r 7! q therefore takes a point P exterior to a sphere
of radius a (in a space where r denotes position)
to an image point Q interior to that sphere (in a
space where q denotes position). Kelvin noted the
foregoing in the 1840s in two seminal publications

(References 1 and 2). Following tradition, I will re-
fer to this association between r and q as Kelvin
Inversion. I will also refer to the sphere of radius a
in the present context as the Reflecting Sphere.

Let {̂ı1, ı̂2, ı̂3} be a right-handed set of constant
unit vectors. Then the vectors r and q have expan-
sions into components relative to {̂ı1, ı̂2, ı̂3}, i.e.

r =
3X

i=1

xîıi , q =
3X

i=1

qîıi . (1.1)1,2

Now the ith scalar component of the vector equation
r/r = q/q is the scalar equation xi/r = qi/q, so
xi = (r/q)qi. But rq = a2, so

xi = (a/q)2qi , i 2 {1, 2, 3} , (1.2)

Equation (1.1)1 is therefore equivalent to

r =
✓

a

q

◆2 3X
i=1

qîıi . (1.3)

In this way Kelvin Inversion defines a transforma-
tion (q1, q2, q3) 7! r.

Whenever there is a function (q1, q2, q3) 7! r
that expresses position, r, in terms of a list of
scalars, (q1, q2, q3) those scalars constitute curvilin-
ear coordinates in a curvilinear coordinate system.
A curvilinear coordinate system is orthogonal if

@r
@qi

•
@r
@qj

= 0 for all i 6= j . (1.4)

Given any orthogonal curvilinear coordinate sys-
tem in three dimensions one associates each of the
three coordinates with one of three scale factors,
(h1, h2, h3) defined by

h2
1 =

@r
@q1

•
@r
@q1

, h2
2 =

@r
@q2

•
@r
@q2

, h2
3 =

@r
@q3

•
@r
@q3

.

(1.5)1,2,3

Let �x denote the Laplace operator with respect
to the cartesian coordinates (x1, x2, x3), i.e.

�x :=
3X

j=1

@2

@xj@xj
. (1.6)
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Let (x1, x2, x3) 7! � be a twice di↵erentiable scalar
function. A classical result from the theory of or-
thogonal curvilinear coordinates asserts that

�x� =
1

h1h2h3


@

@q1

✓
h2h3

h1

@�

@q1

◆
+

@

@q2

✓
h3h1

h2

@�

@q2

◆

+
@

@q3

✓
h1h2

h3

@�

@q3

◆�
. (1.7)

In the particular case when Kelvin Inversion de-
fines the curvilinar coordinates [as in (1.3)] one finds
that the system is, indeed, orthogonal. One also
finds that

h1 = h2 = h3 := h = (a/q)2 ,

so (1.7) simplifies to

�x� =
1
h3

3X
j=1

@

@qj

✓
h

@�

@qj

◆
,

or

�x� =
✓

q

a

◆6 3X
j=1

@

@qj

✓
a

q

◆2 @�

@qj

�
. (1.8)

Note that

a

q

@�

@qj
=

@

@qj

✓
a

q
�

◆
� @

@qj

✓
a

q

◆
�

so

✓
a

q

◆2 @�

@qj
=

a

q

@

@qj

✓
a

q
�

◆
� @

@qj

✓
a

q

◆
a

q
� .

Therefore

@

@qj

✓
a

q

◆2 @�

@qj

�

=
@

@qj


a

q

@

@qj

✓
a

q
�

◆�
� @

@qj


@

@qj

✓
a

q

◆
a

q
�

�

=
@

@qj

✓
a

q

◆
@

@qj

✓
a

q
�

◆
+

a

q

@2

@qj@qj

✓
a

q
�

◆

�


@2

@qj@qj

✓
a

q

◆
a

q
� +

@

@qj

✓
a

q

◆
@

@qj

✓
a

q
�

◆�
,

which simplifies to

@

@qj

✓
a

q

◆2 @�

@qj

�
=

a

q

@2

@qj@qj

✓
a

q
�

◆
�@2(a/q)

@qj@qj

a

q
� .

(1.9)
When one substitutes (1.9) into (1.8) an addi-

tional simplification is possible owing to the identity

3X
j=1

@2(1/q)
@qj@qj

= 0 , (q 6= 0) . (1.10)

If one substitutes (1.9) into (1.8) and simplifies by
means of (1.10) one arrives at the result

�x� =
✓

q

a

◆6 3X
j=1

a

q

@2

@qj@qj

✓
a

q
�

◆
. (1.11)

Let �q denote the Laplace operator with respect
to the coordinates (q1, q2, q3), i.e.

�q :=
3X

j=1

@2

@qj@qj
. (1.12)

Then (1.11) takes the more compact form

�x� = (q/a)5�q[(a/q)�] . (1.13)

If �x� = 0, i.e. � is a harmonic function of the coor-
dinates (x1, x2, x3) and if q 6= 0 [as already assumed
in the derivation of (1.13)] then (1.13) reduces to
�q[(a/q)�] = 0, i.e. (a/q)� is a harmonic func-
tion of the coordinates (q1, q2, q3). This last result
is Kelvin’s Inversion Theorem.

1.2 Objectives.

O1. Formulate and test a numerical method that
fulfills two requirements, namely

i. The method solves for a harmonic function
over an unbounded domain; and

ii. The only computational domains for which
the method requires meshing are bounded.

O2. Compare the computational results with an an-
alytic solution.
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2. A classical problem

2.1 Analytical solution for the disturbance of
a liquid from rest due to sudden accelera-
tion of a submerged sphere. If one rewrites
(1.10) by means of the abbreviation (1.12) it takes
the compact form �q(1/q) = 0 provided q 6= 0.
Similarly, we have the identity �x(1/r) = 0 pro-
vided r 6= 0. Readers familar with potential theory
will know the function (x1, x2, x3) 7! 1/r by the
name simple source. If one di↵erentiates the iden-
tity �x(1/r) = 0 with respect to one of the cartesian
coordinates, say x3, one gets @[�x(1/r)]/@x3 = 0,
or equivalently,

�x[@(1/r)/@x3] = 0 , (2.1)

which shows that the function @(1/r)/@x3 is also
a harmonic function of the coordinates (x1, x2, x3).
Readers familar with potential theory will know the
function (x1, x2, x3) 7! @(1/r)/@x3 by the name
simple dipole.

From the definition r = (x2
1 + x2

2 + x2
3)1/2 one

may deduce the identity

@r/@x3 = x3/r . (2.2)

In view of (2.2) we also have

@(1/r)/@x3 = �r�2(x3/r) . (2.3)

Now let (r,#,') be the spherical coordinates asso-
ciated with the cartesian coordinates (x1, x2, x3) in
the usual way, i.e.

x1 = r sin# cos' , x2 = r sin# sin' , x3 = r cos# .
(2.4)1,2,3

Then (2.3) takes the form

@(1/r)/@x3 = �r�2 cos# . (2.5)

If a fluid is incompressible and in irrotational
motion in a simple connected domain then its ve-
locity field r 7! v satisfies

v = rx� (2.6)

for a harmonic function, �, i.e. a velocity potential.
Here,

rx =
3X

i=1

ı̂i
@

@xi
. (2.7)

A constant multiple of the simple dipole is an ex-
ample of a velocity potential, say �d. Thus

�d = �Cr�2 cos# (2.8)
in which C is a constant to be determined by bound-
ary conditions. If a solid sphere of radius as is ac-
celerated suddenly from rest a suitable boundary
condition would require that the wall be imperme-
able. If, say, the velocity of the sphere equals Q̂ı3
after the sudden acceleration, in which Q > 0 is a
given sphere speed, then the impermeability condi-
ton asserts that

[(r/r) •(rx�d � Q̂ı3)]r=as = 0 , (2.9)
or

[@�d/@r �Qx3/r]r=as = 0 ,

or
[@�d/@r �Q cos#]r=as = 0 ,

or
[@�d/@r]r=as = Q cos# . (2.10)

If one substitutes (2.8) into (2.10) the result reduces
to an equation for C, namely

C = Qa3
s/2 . (2.11)

Equation (2.8) then becomes

�d = �Qa3
s

2r2
cos# = �1

2

✓
as

r

◆3

Qx3 . (2.12)

From (2.12) one may verify that |v| = |rx�d| ! 0
as r !1.

One expedite comparison with numerical re-
sults by expressing the components of the fluid
velocity vector, v = rx�d, in cylindrical coordi-
nates. To this end let ($,', z) be cylinderical co-
ordinates associated with the cartesian coordinates
(x1, x2, x3) in the usual way, i.e.

x1 = $ cos' , x2 = $ sin' , x3 = z . (2.13)1,2,3

It follows that
x2

1 + x2
2 = $2 , (2.14)

so x2
1 + x2

2 + x2
3 = $2 + z2, or

r2 = $2 + z2 . (2.15)
Equation (2.12) for the velocity potential �d be-
comes

�d = �Qa3
s

2
z

($2 + z2)3/2
. (2.16)

The derivatives @�d/@$ and @�d/@z represent the
lateral and axial components of the velocity vector,
respectively.
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2.2 Partition of the domain into near and far
exteriors. Let the radius, as, of a solid sphere be
given. Let the radius, a, of the Reflecting Sphere in
Kelvin Inversion satisfy a > as. I will employ the
terms Near Exterior and Far Exterior to denote the
regions where as < r < a and r > a, respectively.
Employing the foregoing notation for Kelvin Inver-
sion I will employ the term Inverted Far Exterior to
denote the region q < a.

2.3 Analytic solution in the Inverted Far Ex-
terior. Let the expression (a/q)� as in equation
(1.13) have the abbreviation

� := (a/q)� . (2.17)

Then Kelvin’s Inversion theorem, as stated in the
text after (1.13), asserts that (q1, q2, q3) 7! � is a
solution of rq� = 0 in the Inverted Far Exterior,
q < a, whenever (x1.x2, x3) 7! � is a solution of
rx� = 0 in the (ordinary) Far Exterior, r > a. Con-
sider the outermost equality in (2.12) in the form

�d = �Qa3
s

2

✓
1
r

◆2 x3

r
. (2.18)

But x3/r = q3/q [see the text between (1.1) and
(1.2)]. In the mean time rq = a2 implies that r�2 =
q2/a4. Equation (2.18) therefore becomes

�d = �Qa3
s

2
q2

a4

q3

q
,

or

�d = �Q

2

✓
as

a

◆3 q

a
q3 . (2.19)

In view of (2.17) the particular form that the har-
monic function � takes in the Inverted Far Exterior
reduces to the simple linear function

�d = �Q

2

✓
as

a

◆3

q3 . (2.20)

2.4 Boundary-value problems for the near
and far exteriors

2.4.1 Partial di↵erential equations for the near and
far exteriors. As the summary in the text after

(2.17) asserts the di↵erential equation satisfied by
r 7! � in the Near Exterior (r < a) is

rx� = 0 . (2.21)

Now the cylinderical coordinate transformation
($,', z) 7! (x1, x2, x3) is a special case of the
generic orthogonal curviliear coordinate transforma-
tion (q1, q2, q3) 7! (x1, x2, x3). In the the axissym-
metric case—in which nothing depends upon the
azimuthal coordinate '—the corresponding form of
(1.7), simplifies to the classical result

�x� =
1
$

@

@$

✓
$

@�

@$

◆
+

@2�

@z2
,

or, upon multiplication by $,

$�x� =
@

@$

✓
$

@�

@$

◆
+

@

@z

✓
$

@�

@z

◆
.

The left member vanishes by (2.21), so

@

@$

✓
$

@�

@$

◆
+

@

@z

✓
$

@�

@z

◆
= 0 . (2.22)

In a similar way the di↵erential equation satisfied by
q 7! � in the Inverted Far Exterior (q < a) becomes

@

@$

✓
$

@�
@$

◆
+

@

@z

✓
$

@�
@z

◆
= 0 . (2.23)

2.4.2 Impermeable-wall condition for the near exte-
rior. Let n̂ denote the unit vector directed out of
the Near Exterior on the inner boundary of that
domain. Then n̂ = �[r/r]r=as . If one multiplies
equation (2.9) by -1 that equation becomes

n̂ •[(rx�d)r=as � Q̂ı3] = 0 ,

or
@�d/@n�Qn̂ • ı̂3 = 0 . (2.24)

If one denotes by (n1, n2, n3) the scalar components
of n̂ relative to {̂ı1, ı̂2, ı̂3} then (2.24) becomes

@�d/@n = Qn3 = 0 . (2.25)

or, upon multiplication by $,

$@�d/@n = $Qn3 . (2.26)
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2.4.3 Continuity of velocity potential at the Reflect-
ing Sphere. Recall from §1.1 that one of the defin-
ing conditions of Kelvin inversion is rq = a2. On
the reflecting sphere r = q = a and equation (2.17)
reduces to

�RS = �RS , (2.27)

in which the subscript ( )RS denotes evaluation on
the Reflecting Sphere.
2.4.4 Continuity of normal velocity at the Reflecting
Sphere. One may arrange (2.17) in the form

� = (q/a)� (2.28)

so
@�

@q
=

q

a

@�
@q

+
1
a
� . (2.29)

But @/@q = (dr/dq)@/@r in which the identity
rq = a2 implies that r = a2/q. Therefore dr/dq =
�a2/q2 and (2.29) becomes

�a2

q2

@�

@r
=

q

a

@�
@q

+
1
a
� ,

or, equivalently,

q

a

@�
@q

= �a2

q2

@�

@r
� 1

a
� . (2.30)

If one evaluates (2.30) on the Reflecting Sphere and
recalls that r = q = a on that boundary one obtains

✓
@�
@q

◆
RS

= �
✓

@�

@r

◆
RS

� 1
a
�RS , (2.31)

or, upon multiplication by $,

$

✓
@�
@q

◆
RS

= �$

✓
@�

@r

◆
RS

� $

a
�RS . (2.32)

3. COMSOL simulation for the veloc-
ity potential

One may replicate the results of the §4 below by
building a COMSOL model tree according to the
following scheme.

1. After lauching COMSOL respond the the usual
interrogatories as follows: For Space Dimeni-
son, choose 2D axisymmetric; For Add Physics,

choose Mathematics > Classical PDEs > Pois-
son’s Equation (poeq)*.

2. Construct the first branch of the model tree to
solve for the velocity potential, �, in the Near
Exterior. To this end change the name of the
dependent variable from the default u to phi
and specify units appropriate to the velocity
potential (i.e. (m^2/s) for the dependent vari-
able and m/s for the source term).

3. For Study Type, choose Stationary and click
Finish. Select the node Poisson’s Equation 1.
Expand the heading Di↵usion Coe�cient, c,
and enter r in the c-field. Expand the head-
ing Source Term, f , and enter 0 in the f -field.
This instruction will implement equation (2.22)
above.

4. Add a second branch of the model tree with
which to solve for � in the Inverted Far Ex-
terior. To do so right-click the root node and
choose Add Model. Respond to the interroga-
tories as in steps 1 & 2 above but this time
name the dependent variable Phi and click Fin-
ish without adding a second Study.

5. Right-click Global Definitions and choose Pa-
rameters. Denote the first parameter by a_s.
Assign it the value 1[m] and the description
Radius of solid sphere. Denote the second pa-
rameter by radiusRatio. Assign it the value
1.5. Denote the third parameter by a. As-
sign it the value radiusRatio*a_s and the
description Radius of reflecting sphere. De-
note the fourth parameter by Q. Assign it the
value 1[m/s] and the description Speed of solid
sphere (after sudden acceleration from rest).

6. Rename Model 1 Near Exterior and Model 2
Inverted Far Exterior.

7. For the Geometry in the Near Exterior build
two circles of radii a and a_s and form their
Boolean Di↵erence. For the Geometry in the
Inverted Far Exterior build just one circle of
radius a.

8. To expedite later statements of boundary con-
ditions introduce explicit selections under the
local definitions lists for each model, namely

* In 2D Axisymmetric models COMSOL’s Phy-
sics Interface Laplace Equation (lpeq) appears to
solve the equation urr + uzz = 0 for u, of which
equation (2.22) is not a special case.

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston



COMSOL Conference Boston 2013 page 6

selections for the Solid Sphere and the Reflect-
ing Sphere under the local definitions list for
the Near Exterior and for the Reflecting Sphere
under the local definitions list for the Inverted
Far Exterior.

9. To enable exhange of information between the
two branches of the model tree introduce a
Model Coupling Operator of General Extru-
sion type under the local definitions list for
the Near Exterior. It should assign itself the
default name genext1. Under Geometric en-
tity level select Boundary and under Selection
choose Reflecting Sphere. Accept the default
formulas in the fields labeled Destination map.
The e↵ect is to tell COMSOL that the values
on the Reflecting Sphere of (x2

1 + x2
2)1/2 coin-

cide with those of (q2
1 +q2

2)1/2 and the values of
x3 coincide with those of q3. In a similar way
introduce a Model Coulpling Operator of Gen-
eral Extrusion type under the local definitions
list for the Near Exterior. It should assign it-
self the default name genext2. All additional
specifications track those of genext1.

10. Under the Near Exterior branch right-click the
Poisson Equation Physics Interface and select
Flux/Source. Choose Solid Sphere for the
boundary and expand the heading Equation to
display the definitions of the input parameters.
In the field under Boundary Flux/Source enter
r*Q*nz. This instruction will implement equa-
tion (2.26) above.

11. Under the Near Exterior branch right-click the
Poisson Equation Physics Interface and select
Dirichlet Boudary Condition. Choose Reflect-
ing Sphere for the boundary. In the field un-
der Dirichlet Boudary Condition > Prescribed
value of phi enter mod2.genext2(mod2.Phi).
This instruction implements equation (2.27).

12. To enable reading of the boundary value of
the radial velocity in the Near Exterior from
within the Inverted Far Exterior, right-click
the local definitions node in the Near Exte-
rior branch and select Variables. Under Geo-
metric entitiy level choose Boundary and un-
der Selection choose Reflecting Sphere. Name
a new variable dphidR and define its expression
as phir*(r/a)+phiz*(z/a).

13. Under the Inverted Far Exterior branch right-

click the Poisson Equation Physics Interface
and select Flux/Source. Choose Reflecting
Sphere for the boundary and expand the head-
ing Equation to display the definitions of COM-
SOL’s input parameters. In the field labeled
Boundary Flux/Source enter

�r ⇤ mod1.genext1(mod1.dphidR) .

In the field labeled Boundary Absorbtion/Im-
pedance Term enter r/a. These instructions
will implement equation (2.32).

If one carries out steps 1–13 above and clicks Com-
pute COMSOL will calculate the distributions of
phi and Phi in the Near Exterior and the Inverted
Far Exterior, respectively, and will furnish 2D and
3D Plot Groups for both. In order to expedite com-
parison between the computed results and the ana-
lytical ones I will include one more step.

14. Right-click the Definitions in the Near Exterior
branch of the model tree and select Variables.
For the Geometric entity level menu choose Do-
main and for the Selection menu choose all do-
mains. In the first line of the Variables table
enter phiAnalytic for the name. Enter

�(1/2) ⇤ Q ⇤ a sˆ3 ⇤ z ⇤ (rˆ2 + zˆ2)ˆ(�3/2)

for the expression. The e↵ect will be to pro-
gram the equivalent of equation (2.16). Simi-
larly, right-click the Definitions in the Inverted
Far Exterior branch of the model tree and se-
lect Variables. For the Geometric entity level
menu choose Domain and for the Selection
menu choose All domains. In the first line of
the Variables table enter PhiAnalytic for the
name and

�(1/2) ⇤ Q ⇤ (a s/a)ˆ3 ⇤ z

for the expression. The e↵ect will be to pro-
gram the equivalent of equation (2.20).
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4. Results for the velocity potential

Figure 4.1 Velocity potential, �, in the Near Exterior
by COMSOL. Here, and elsewhere, a/as = 1.5, the mesh
is the default in both models, and the z-axis points up
from the center. The ranges for � are (�0.5, 0.5)m2/s for
the analytical solution and (�0.498, 0.498)m2/s for the

simulation.

Figure 4.2 Discrepancy, �� := � � �analytic, between
COMSOL and analytical calculation in the Near Exterior.

The range of �� is (�2.63, 2.99)⇥ 10�3 m2/s.

Figure 4.3 Velocity potential, �, in the Inverted Far Ex-
terior by COMSOL. The range of � covers the intervals
(�0.222, 0.222)m2/s and (�0.220, 0.220)m2/s for the (an-
alytical, simulatied) solutions, respectively. The linear

dependence upon z is in accord with equation (2.20).

5. Conclusions

C1. Kelvin’s Inversion Theorem enables replace-
ment of one flow in an unbounded domain by
two flows, each of which is in a bounded do-
main;

C2. COMSOL enables simultaneous solution in the
two bounded domains.
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