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Abstract: Surface acoustic wave (SAW) devices 

are commonly used as wireless filters, resonators 

and sensors. The confinement of acoustic energy 

near the surface of a piezoelectric substrate in a 

SAW sensor makes it highly sensitive for 

discerning surface perturbation. As sensors, 

SAW devices have the potential to provide a 

high-performance sensing platform with 

capabilities of remote and high-temperature 

operations. This is very attractive for SAW 

sensors because dangerous chemical and 

biological species can be detected in extreme 

conditions remotely.  

 

Since piezoelectric materials commonly used as 

SAW substrates are anisotropic, the performance 

of a SAW device depends on not only the cut 

angle of its substrate material but also the wave 

propagation direction. To produce high 

performance SAW devices, optimal orientations 

of the crystal cut for the piezoelectric substrate 

and the SAW propagation are crucial. This work 

takes advantage of COMSOL Multiphysics 

computational power to investigate this 

important problem.     
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1. Introduction 
 

SAW based biosensors are MEMS devices in 

which high frequency acoustic waves travel 

close to the surface of a piezoelectric substrate. 

SAW devices are highly sensitive for discerning 

surface perturbation such as molecular 

absorption or adsorption and other perturbation. 

To use a SAW device as a sensor, very often a 

two-port delay-line configuration is used (Fig.1). 

In this SAW device, two sets of interdigitated 

transducers (IDEs) are placed atop a 

piezoelectric substrate and separated by a 

distance. The active area between the 

transmitting and receiving IDEs is often coated 

with a chemically sensitive layer for molecular 

absorption or adsorption while the change in 

wave propagation is characterized for frequency 

shift and insertion loss.  

 

2. Constitutive and Wave Equations 
 

A piezoelectric material is often governed by the 

following constitutive relationships: 

ET C S e E     and d e S E     

Where T and S are the stress and strain tensors, E 

and d are the electric field and displacement 

vectors, and CE, e and ε are the stiffness, 

piezoelectric constant and dielectric matrices of 

the substrate material, respectively. Considering 

wave propagation in such a piezoelectric 

material, we have: 
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Here ρ is the material density, u  and u  are 

particle displacement and acceleration, 

respectively, and φ is the electric potential.  

 

3. Crystal Orientation 
 

Since piezoelectric materials are anisotropic 

materials, a different orientation of a cut crystal 

substrate will result in a different set of material 

properties including the CE, e and ε matrices, 

thus affecting the wave propagation 

characteristics. The selection of a unique crystal 

cut is often defined by a set of Euler angles 

(,,). As illustrated in Fig.2, starting from the 

crystal axises (X, Y, Z), the first Euler angle 

defines the rotation of  about the Z axis, the 

second Euler angle defines the rotation of  

about the rotated x’ axis, and the third Euler 

angle defines the rotation of  about the rotated 

z axis to orient the wave propagation in the x 
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Fig. 1 – Schematic of a two-port delay-line SAW sensor.  
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direction. Thus with this Euler angle 

configuration, the acoustic wave is assumed to 

be a plane wave in the saggital zx plane, 

traveling in the x direction. If the wave is 

polarized in the x direction, the wave is called 

longitudinal wave; if it is polarized in the z 

direction, it is shear vertical wave; if it is 

polarized in the y direction, it is shear horizontal 

wave. The surface wave is often the coupling of 

these wave traveling near the surface.     

 
 

With each rotation, two rotation matrices, [a] and 

[M], can be determined: 
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With these rotation matrices, for each selected 

crystal cut, a new set of material constant 

matrices in (x, y, z) can be determined based on 

the material constants given in its original crystal 

coordinated (X, Y, Z):  
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For this study, we take advantage of the Crystal 

Rotation Calculator available at zephrasoft.com 

to perform the transformation and obtained the 

transformed matrices.   

4. Modeling Consideration 
 

Once the rotated material properties are 

determined, we then used a 3D COMSOL model 

of a two-port SAW sensor to characterize the 

wave propagation characteristics in these crystal 

cuts. For the crystal materials, we considered 

trigonal crystal materials Langasite and Lithium 

Niobate. For the IDEs, their finger width and 

spacing are set at 5 m. To excite the 

transmitting IDTs, an impulse potential signal is 

applied to the electrodes in an alternating 

manner: 
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To get the output signal, the voltage at the 

receiver IDTs is obtained in the same alternating 

manner.   

The material properties matrices of Langaite are: 
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Fig. 3 – COMSOL model of a two-port delay line SAW 

sensor 
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Fig. 2 – Rotation by Euler angles (,, ). 



 
 

 

Langasite: (,, ) = (0, 0, 0) 
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The material properties matrices of Lithium 

Niobate are: 
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Lithium Niobate: (,, ) = (0, 0, 0) 
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5. Results and Discussion 
 

Since the SAW device we modeled has 

reciprocal and symmetric design for the two 

IDEs, i.e., S11=S22 (reflection coefficients) and 

S12=S21 (transmission coefficients), we 

quantified the insertion loss (-20log|S12|) for 

different crystal cuts. 

 
inputoutput VVIL /log20 10

 
Moreover, we also determined the resonant 

frequency (f0) from the modeling results and 

quantified the SAW travel velocity by using 

v=f0, where  is the wavelength of the 

generated SAW (=20 m). 

 

Fig.4 shows a typical series of output signals 

obtained at the receiver IDEs. With these 

measurements, the insertion loss spectra were 

determined by performing FFT. As shown in 

Fig.5 through Fig.8, insertion loss spectra of 

Langasite show that the SAW waves exhibit a 

resonant frequency from approximately 120 

MHz to 135 MHz at different cut angles. With 

=20 m, we estimate that the wave travels in a 

velocity around 2400 m/s to 2700 m/s in these 

Langasite cuts and propagation directions.    
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Fig. 4 – Time varying output signals obtained at the 

receiver IDEs. 
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Fig. 5 – Insertion loss spectra of Langasite at various 

crystal cuts.  
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Fig. 6 – Insertion loss spectra of Langasite at various 

crystal cuts. Euler angles are specified in the legends.  
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Fig. 7 – Insertion loss spectra of Langasite at various 

crystal cuts. Euler angles are specified in the legends.  
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Fig. 8 – Insertion loss spectra of Langasite at various 

crystal cuts. Euler angles are specified in the legends.  

 

Fig.9 shows the insertion loss spectra for 

Lithium Niobate substrate, where the resonant 

frequency is found from approximately 160 MHz 

to 190 MHz, which corresponds to a travel 

velocity of around 3200 m/s to 3800 m/s in these 

various crystal cuts and propagation directions. 
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Fig. 9 – Insertion loss spectra of lithium niobate at 

various crystal cuts. Euler angles are specified in the 

legends.  

 

6. Conclusions 
 

This work not only reveals how insertion loss 

and SAW travel velocity are affected by the 

crystal cut angles and the wave propagation 

direction but also demonstrates that computer 

simulation can provide a better and cost-effective 

way to identify an optimal crystal orientation for 

the development of high performance SAW 

devices. 
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