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Heart Valve Function 
A multi-scale biomechanical problem 

Total  
Thickness 
700 μm 

Fibrosa ~45% 

Spongiosa ~30% 

Ventricularis~25% 

Collagen 
 
GAGs 
 
Collagen, Elastin 



The Valve Interstitial Cell 

• Mixed fibroblast & smooth-muscle  

 cell phenotype 

 

• Active communicating cell-cell junctions 

 

• Highly “reactive” and contractile 

 

• Maintain the valve ECM homeostasis  

 through protein synthesis and enzyme 
 degradation 

 

• Quiescent during homeostasis & active 
during growth and disease 

 

 

Cell-Cell junctions  connecting 2 AVICs 



VIC-ECM Coupling: Role in force generation 

• VICs align in parallel with the collagen fiber preferred direction 
 

• Integrin mediated contraction/force generation1 

1Stephens, E.H., et al., Cellular and Molecular Bioengineering, 2010 

Collagen 
Fibers 

VIC 



VIC Stiffness/Contraction 

 
• Contraction effects: 

 
  Short Term  Increased stiffness 
 
  Long Term  Activation of   
 mechanochemical signaling 

• Decoupling of stiffness and contraction 
 
• VICs balance forces via contraction to 

maintain valve homeostasis  
 
• Role of VIC contraction in valve function 

is poorly understood 

External Stress Contraction Increased cell stiffness Mechanotransduction 

Focal Adhesion Site 

Cytoskeleton 

Overall External Forces 

Reaction Forces 



Mechanotransduction 

• Increased transvalvular pressure positively correlates with 
higher effective stiffness in VICs1 

• Strong relation of SMA and HSP47 indicating VICs response to 
mechanical stimuli in an attempt to maintain valve homeostasis 

• Similar trends were found in in situ studies  

VIC Stiffness SMA expression ECM biosynthesis 

1Merryman, W.D., et al., American Journal of Physiology-Heart and Circulatory Physiology, 2006.  
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Limitations of Ex-vivo methods 
Discrepancy greater than 100-fold1,2 

2Merryman, W.D., et al., Tissue Engineering, 2007. 

1Merryman, W.D., et al., American Journal of Physiology-Heart and Circulatory Physiology, 2006.  
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Micropipette Aspiration Atomic Force Microscopy 

Right-Side Left-Side Right-Side Left-Side 

• Proportional changes consistent, yet vary in magnitude 



Goals 

• Develop an integrated computational-experimental tool 
to assess AVIC physical state in the in situ environment 

 (low and high force regions) 
 
 

• Ultimately a true multi-scale model based on high-
fidelity 3D tissue micromorphology 

 
 

• Accurately address layer and regional differences  
 (belly region, coaptation, commissure, basal attachment) 



Current experimental methods: Flexure testing1 

• Physiologically relevant deformation 
 
• Low force measurements in situ 
 
• Probe transmural effects 

1Merryman, W.D., et al.,. Journal of Biomechanics, 2006 



Flexure Experimental Results 
Bi-directional linearity of M vs. Δk1 suggest linear material model 

 

1Merryman, W.D., et al.,. Journal of Biomechanics, 2006 



Averaged Specimen Data 

Natural Curvature 

WC Bending 

Natural Curvature 

AC Bending 



Isotropic Hyperelastic Material Model 

• Bimodular Ogden (N=1):  
  
 
 
• Incompressibility Assumption: 
 
 
 
• When α= 2 becomes a Bimodular Neo-Hookean material model 

 
  



Macro-Model 
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Right Post (roller) 
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Bi-directionality 

Green-Lagrange 
Strain Gradient 



Comsol Model Details 

• Isotropic incompressible hyperelastic model 
• 4 assigned shear moduli (bilayer/bimodular) 

– μFibrosa
+/-  μVenticularis

+/-     
– Stiffer in compression similar to bending of rubber 

• Brick element mesh 
• Study Extension (Continuation) 
• Direct Solver 
 

 



Justification/Uniqueness 

1. Neo-Hookean Bilayer 
-captures thapsigargin state only 
-unable to capture the M/I vs. curvature relation (normal and 
 hyper  
-unable to capture the bidirectionality 
 

2. Ogden Bilayer 
-captures the M/I vs. curvature relation for all 3 states 
-unable to capture the bidirectionality 
 

3. Ogden Bilayer /Bimodular 
-captures the M/I vs. curvature relation and bidirectionality for all 
  3 states 



Results 
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Ogden Bilayer/Bimodular/Bidirectional 

Thapsigargin μ+  (kPa) μ- (kPa) 
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Model Coupling 



Micro-Model 

• Local periodicity due to varying 
constituents throughout the layers 

RVEVentricularis 

RVEFibrosa 

RVESpongiosa 



First-order computational homogenization method 

1. Localization: Macro scale 
displacements (FM) mapped to 
the boundary nodes of the 
RVEs 

 
 
1. Homogenization: Classical 1st 

order homogenization 
procedure (average stress 
over RVE) 

 
 
 

1. Becomes the baseline stress 
value of the “homogeneous” 
tissue  

1Kouznetsova, V.G. “Computational homogenization for the multi-scale analysis of multi-phase materials”.Ph.D. dissertation, Technische Universiteit 
Eindhoven, 2002. 



Determine cell stiffness contribution 

Cell Stiffness, Gcell (kPa) 

Baseline 

GHomogeneous=constant 
Low cell stiffness 
~10kPa 

GHomogeneous=constant 
High cell stiffness 
~130kPa 

Ghomogeneous 

Cell stiffness 
needed to 

achieve macro-
level stiffness 



Influence of ECM and Cell Stiffness on Tissue Properties  

Cell Stiffness, E
CELL

 (kPa)
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• Developing a more realistic model that incorporates recent micro-
morphology data relating to layer varying properties 

3D micromorphology Integration 
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Bending	bar	
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Combining flexure and low level stretch 
Physiologically relevant testing capable of investigating small level 
forces that represent residual stresses known to be present1  
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1Amini, R, et al., Annals of Biomedical Engineering, 2012. 



Conclusions 
• Multi-scale approaches can provide a sensitive 

method to estimate individual cell behavior in situ 
from tissue level measurements 

• A bilayer/bimodular hyperelastic model is essential to 
capture bidirectional effects of tissue response  

• Expand existing models to reflect true regional 
micromorphology of the valve 

• Account for full physiological loading conditions 

• Use as an investigative tool for VIC state with various 
agents (e.g. statins). 
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