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Introduction topics B~

3 many analytical formulations for thermal

~ and fluid effective properties (Mscale)

7 Vi

o Coming from BCs hypothesis and
, averaging technics on elementary

I N unit at pscale

Continuous or discontinuous o phase
[Nozad1985]
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— £,(€)

cste to account for pscale = 72,150,180

specificities mainly fromt

( Leading to fitting parameters [FE%
Keff =

What is the specific relationship between effective macroscopic

homogenous properties used in continuum equations and

microstructure ? Y, 2



Presentation Outline

4 1 y Numerical Twins & Powder analysis : RVE generation




Numerical Twins & Powder

B analysis
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Strategies to have access to pstructure

m From real microstructure approach (not developed)
m 2D SEM with different slices
m 3D tomography

m Reconstruction and numerical transfer to FEM code
(sometimes laborious with manual cleaning and filtering)

3D reconstructed SOFC anode Electric field in the porous media

[VIVET2011]
m From statistically Representative Volume Element (RVE)

with microstructural information (SSA, €...)
m Numerical twins

m Homemade software for particles microstructure generation
(genefrac)

[GUESNET2018]

m Front Tracking method (microstructure to geometry) vs B
Front Capturing method (microstructure to material) pstrucutre to Material

m Material properties following microstructure
m FC method efficiency (computational cost)
m FCversatile method R a4

pstrucutre to Geometry

(coarsening or refining mesh) £ -TAS B

s 3 ¥

1 .
n . 0

g £ i I L TR W
L= . o

[COMSOL2017]




Powder analysis

m Ideal sphere hypothesis usually used

m SSA measured by BET technique = 1[m?/g]

6 . . :
m Sy = ——givesan equivalent diameter

m dgq =~ 500[nm] consistent with SEM observations

eq

m But

m It’s all but a simple crystallographic organization

m a bimodal distribution is observed

m Consequently, porosity (Volumetric density measurement)
is higher than the ideal crystallographic organization

m Agglomerates of about 10[um] characterized

Particles are not so spherical

by laser particle size analysis

Volume fraction Cumul

09

08

#* Agglomerats cumulated distribution Exp
—— Log Normal distribution with =2.2 and 0"2=0.74

o Agglomerats distribution Exp

Particle size [m]

4 ds
2.7 um (1) 9.3 um (1)

RSD=8.7% RSD =6.0 %

T

24.1 um (1)
RSD =8.1 %

40.035

10.025

10.02

40.015

410.01

-10.005

Volume fraction



RVE generation
genefrac [ROCHAIS2022]

m pstructure generation with physical
characteristics from homemade software Genefrac

m Simplified to

m 26 particles of 400[nm] diameter and 50[nm] overlap
€ 0.75 and SSA 1.17[m?%g]

m 3 agglomerates

m particles connections for continuous o phase(blue) but unconsolidated material
m Consolidated material with additional hertz contact (green) ?\

m 2D calculations with 11 slices to reduce 3D computational cost (GUESNET2018]

m Front Capturing method with microstructure to i -~ " —_— ﬁu(%
material approach and mesh refinement | B o mi

m Spatial dependency of local physical props
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Modeling and Governing Equations
Fluid flow and HT

keff = Skf + (1 - S)ks
Volume Avg/Arithmetic mean/Parallel distribution

-
-
e I.

m HT at Mscale

R
m Heat equation for stationary conditions L k= 1k + (L £)/ky)
?‘} . Reciprocal Avg/Harmonic mean/Series distribution
o —_ — k \,
=V ( Kerr VT) 0 1@" | kepr = KE RSO
m Effective conductivity at Mscale from analytical formulations fv‘*}’ Power Law/Geometrical mean/Random distribution
I o 1-9
keff = kf. E+W
(0.228 +3—ks)

m HT at pscale
m Heat equation for stationary conditions

m V- (—kpnaseVT) =0 .
m Each local material properties are spatial functions 7 - Solid

of the pstructure distribution wo geometrically defined
domains

u kphase =ksfs + kf(l - fs)
m Effective conductivity from pscale calculation

K [f —=kvTdri,
eq — (Tout_Tin)L

[Kunii1960]




Modeling and Governing Equations
Fluid flow and HT

d.;rain &3
. Kkozeny = Zan 71 _ 2
m Fluid Flow at Mscale BRSO 180 (1-e)?
. . . w“; conduit flow” with fitting constant for t
m Darcy’s law, mass conservation and Stationary conditions et ,yam 4 8
m V- (pu) =0 A Korinkman ==\ Pt a—e A e
K i%';" 4 “flow around submerged objects”
EU=—- Vp ) '--t_ = X _ ngrain
u, ?‘: . . stokes 36. (1 — E)

“flow around submerged objects” for limiting condition
e—>1

m Darcy’s velocity u # (v) the mean interstitial velocity

m Fluid Flow at pscale
m Laminar flow (inertial terms) and Stationary conditions
m Navier Stokes equations for mass and momentum balance
m V-(pv)=0

o p(v-V)v=l7- [—pI+K] +F

m Viscous stress tensor K = u(Vv + Vv')

m Volumedragforce F = —K,,;;;, (x,y,2) * v

m Effective permeability from pscale calculation
__ nveL
B Keg = ap




Modeling and Governing Equations
Numerical validations J J

Numerical validation from mass conservation Volume drag force influence on kg -f
Relative error is very low (below ~ 1012 %) for each K, ., Results independence for K,,,,,,, > 104 ﬂl
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3 B Results and discussion
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Results and discussion

HT / Effective Thermal Conductivity

m the pstructure

m the relative magnitude of k/ks (the same for each cases)

m continuity of solid phase and average porosity
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Results and discussion
HT / Effective Thermal Conductivity

200f * * W % o
Reciprocal Avg
i Kunii
Power Law
l %0 k. eq
WA 7 _
v ava AN
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Porosity

"# 4 k4 for numerical twin calculations is :
close to the Kunii model, 2 decades lower than // distribution (by default) !!

=

(highly insulated porous medium)

Characteritic length [m]

107*

107°

107

1077

1078

m— Kn=10

m— Kn=1
m— Kn=0.1
== Kn=0.01
10 bar
1 bar
100 mbar

Continuum Regime

Molecular F

. 2
Degree of rarefaction : K, = z
(with C as a function of €.4)

001< K, <01
Slip regime

01<K,<10
Transitional regime

10 < K,
Molecular regime

107

107 107
Mean Free Path [m]

Consistent with literature data for “high p —low € — unconsolidated” material
still under investigation for transition to molecular regime — high € — consolidated
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keff = Ekf + (1 - S)ks

Volume Avg/Arithmetic mean/Parallel distribution

ke = 1/(e/kp + (1 = &) /ks)

Reciprocal Avg/Harmonic mean/Series distribution
1—

kepy = ki kS0

Power Law/Geometrical mean/Random

distribution

1-9

2k
2 L 20
<0.228 + 3ks)

keff = kf. &+

[Kunii1960]



4- Summary and Outlook
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Summary and Outlook

m Numerical twin strategy linking a homemade software for microstructure generation
of consolidated particles with COMSOL Multiphysics® has been proposed

m Could be an efficient tool to choose the right effective
model at Mscale for thermal and fluid effective properties

m Many interesting prospects are
m BCs and RVE statistics
m Calculation on larger number of particles
m Study of specific pustructure influence on the effective response
m anisotropy, bimodale distribution, degree of consolidation...
m Study of particular regime for HT and Fluid flow for a wide range

1000 T T

effective properties evaluation Smeos e
) o I;RU?ICZKTM 3;3:3;3%) Continuous 6-phase
m Molecular regime, local chocked flow & turbulence effects Rl R C/a=002

A KLING 038

< WADDAMS 04-049

# YAGI and KUNIL 04 O

100 |- < GORRING and CHURCHILL 0.45
> KANNULUIK and MARTIN 031-035

UNOZAD etal. 039-041

m Physic’s coupling £ D e o
m HT and flow coupling o

m Study of potential Local thermal
non equilibrium

Void Fraction =& 7d

10 L D ” Continuous
. & Y o B-phase

[ ]
eB = 0.36 for Theoretical Calculations ' <

[Nozad1985] N
1 | 1 L L

1 10 100 1000 10 000 100 000 L

High order dimension
m 3D simulation influence y e l
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Results and discussion
Fluid flow / Effective Permeability
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g A Each slice are calculated for 2D stationary cases with remeshing and laminar flow :
m Low velocity for this imposed Vp
m Consistent with equivalent Mscale calculation for Darcian flow
20

m Local eddies depending on ustructure



Results and discussion
Fluid flow / Effective Permeability

| O x.eq
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Porosity

W g g Effective permeability k4 ,calculated by numerical twin,
exhibits :

m Results close to KKozeny

@ m A wide variability depending on local ustructure
(channeling vs tortuosity effect)

Discussion = !

Kkozeny Dased on the assumption of conduit flow with fitting
constant for 7 effect

m Hypothesis should break down at high €5
m "flow around submerged objects" should be better at high

€erf
BC’s & dimension influence

__ m The flow gets around the particle in 3D and 2D simulation

could be too restrictive

S=—— u the proximity of other spheres should influence wake
: formation downstream from every sphere

[Nigam2019]



Results and discussion
Fluid Flow Regimes
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Reynolds number
|ncreasing Vp & Re Correlated at Mscale using Ergun equation for deviation of the Darcy’s law for
high Re & strong inertia (Non Darcian Flow)
g Local eddies starts to develop with increasing Re (>10) '
m Byincreasing Re the flow regime gradually changes from Vp=—ru—fplufu with f == 4 ‘c
laminar to turbulent \
m Weak inertia regime consistent with literature 10<Re<100 PRl Cal)) P dy & q,_
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m Inertial terms create additional pressure drop at high Re P (1-¢)
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