

COMSOL Conference 2011, December 2, 2011 @ Akihabara

COMSOL Multiphysicsと実験を併用した 薄膜製造プロセスの解析

霜垣幸浩

東京大学マテリアル工学専攻 〒113-8656 文京区本郷7-3-1 E-mail shimo@dpe.mm.t.u-tokyo.ac.jp http://www.dpe.mm.t.u-tokyo.ac.jp

Outline

Introduction

Mechanism of Metal Organic Chemical Vapor Deposition

Selective Area Growth (SAG)

GaAs-SAG

Linear kinetic analysis

Non-Linear kinetic analysis

Doping Effects

InP, InAs, InAsP, GaAsP, InGaAsP

Kinetics of InP/InAs and InAsP/GaAsP SAG

Estimation of InGaAsP PL wavelength distribution

Conclusion

III-V compound semiconductor MOCVD Process

MOCVD Reaction Mechanism

Flow cracking reactor and FT-IR gas analysis

Arrhenius plot of decomposition rate constants

Selective area growth (SAG) MOCVD

Outline

Introduction

Mechanism of Metal Organic Chemical Vapor DepositionSelective Area Growth (SAG)

GaAs-SAG

Linear kinetic analysis

Non-Linear kinetic analysis

- Doping Effects
- InP, InAs, InGaAs, InGaP, InGaAsP
 Kinetics of InP/InAs and InAsP/GaAsP SAG
 Estimation of InGaAsP PL wavelength distribution
 Conclusion

- Diffusion coefficient can be estimated from the slope of the growth rate profile.
- We can also use Chapman-Enskog equation to estimate the diffusion coefficient.

Estimation of Surface Reaction Rate Constant, k_s by SAG

Growth Rate distribution analysis

GaAs Surface Structure

Effect of P_{TMGa} on SAG Profile

P_{TMGa} Dependency of k_s

 $MMGa + AsH \rightarrow GaAs + by-products$

Estimation of Surface Coverage

Surface coverage

$$\Theta_{Ga} = \frac{KC_{Ga}}{1 + KC_{Ga}} \qquad @575^{\circ}C$$

	surface coverage (θ_{Ga})				
<i>р</i> _{тмGa} (10 ⁻³ mbar)	0.83	1.7	2.9	4.1	5.8
Just	0.08	0.15	0.23	0.34	0.45
2° off	0.10	0.18	0.26	0.39	0.51
5° off	0.12	0.21	0.30	0.43	0.55
15° off	0.13	0.24	0.34	0.47	0.59

Outline

Introduction

Mechanism of Metal Organic Chemical Vapor Deposition

Selective Area Growth

GaAs-SAG

Linear kinetic analysis

Non-Linear kinetic analysis

Doping Effects

InP, InAs, InGaAs, InGaP, InGaAsP

Kinetics of InP/InAs and InAsP/GaAsP SAG

Estimation of InGaAsP PL wavelength distribution

Conclusion

simulation

1.55µm PL Wavelength Estimation

Measured and simulated photoluminescence (PL) peak wavelength

Mask design for transition region

Summary

- SAG-MOCVD is a powerful tool to fabricate OEICs and is also effective to extract true surface kinetics during MOCVD.
- GaAs-MOCVD process was examined by SAG analysis.

Below 600°C, surface kinetics shows non-linear behavior.

Surface reaction rate constant of adsorbed species was constant against offset angle, while adsorption equilibrium constant has a offset angle dependency.

S/Zn doping shows little or no effect on surface kinetics.

- InGaAsP PL wavelength was well predicted by SAG simulation based on the obtained kinetics.
- Mask design for OEICs is possible based on kinetic data base and kinetic simulation.