<u>Numerical study of exciton states of</u> <u>core-shell CdTe/CdS nanotetrapods</u> <u>by using COMSOL Multiphysics</u>

Yuanzhao YAO, Kazuaki SAKODA

Quantum Dot Research Center, National Institute for Materials Science

Graduate School of Pure and Applied Sciences, University of Tsukuba

Colloidal quantum dots (QDs)

Colloidal QDs

are synthesized from precursor compounds dissolved in solutions. (Chemical processes)

Five different QD solutions are shown excited with the same longwavelength UV lamp; the size of the nanocrystal determines the color. (from HP of "invitrogen")

Application of colloidal QD

- Infrared detector , sensor
- QD electroluminescence device
- solar cell
- luminescent marker

CdSe QDs are injected into a mouse, and fluoresce under UVlight. Mark the location of cancer tumour. (from National Geographic)

Colloidal QD light-emitting device pixels P.O.Anikeeva, et al. (Nano Lett.,9,2532,2009)

Shape control of colloidal QD

Proposed model of a CdTe tetrapod

L. Manna, et al. Nature materials, vol.2, 382 (2003)

CdTe/CdS core-shell tetrapods

R. B. Vasiliev, et al. Mendeleev Commun. 19, 128 (2009)

t=CdS shell thickness

Arm

CdS shell

Theoretical model

(1)**Single particle Schrodinger equation** (Effective-mass approximation) Solved with finite element method by using **COMSOL software**

 $\Psi_i(r_i) = \varphi_i(r_i) u_i(r_i) \qquad \text{i= e or } \mathsf{h}$

 $arphi_i$ is the envelope function and u_i is the atomic wave function

$$H_i(r_i)\varphi_i(r_i) = \left\{-\frac{\hbar^2 \Delta_i}{2m_i^*} + V_i(r_i)\right\}\varphi_i(r_i) = E_i\varphi_i(r_i)$$

Consider the lowest 20 electron and 20 hole states, whose wave functions only have **A1** or **T2** symmetry

(2)**Two-body Schrodinger equation**

Solved with configuration interaction method

$$\Psi(r_e, r_h) = \sum_{i,j} a_{i,j} \varphi_e^{(i)}(r_e) \varphi_h^{(j)}(r_h),$$
$$\left(H_e + H_h - \frac{e_0^2}{4\pi\epsilon_0\epsilon |r_e - r_h|}\right) \Psi(r_e, r_h) = E_X \Psi(r_e, r_h)$$

Same method as: K. Sakoda et al., Opt. Mat. Express 1, 379 (2011).

nice tool for modeling QD with complicated geometry

3D model of CdTe/CdS core-shell tetrapod

Lowest electron state(e1) and highest hole state(h1) wave function distribution

Single-particle state e1&h1 overlap integral

Shell thickness dependence of exciton energy with A1 and T2 symmetry

Analytical calculation (1)

t=1.2

(1)

Constructed electron wave function, combination of 4 independent wave function on each branch

$$\varphi_{A1} = \frac{1}{2}(\phi_1 + \phi_2 + \phi_3 + \phi_4),$$

$$\varphi_{T2}^{(1)} = \frac{1}{2}(\phi_1 + \phi_2 - \phi_3 - \phi_4),$$
 (2)

$$\varphi_{T2}^{(2)} = \frac{1}{2}(\phi_1 - \phi_2 + \phi_3 - \phi_4),$$
 (3)

$$\varphi_{T2}^{(3)} = \frac{1}{2}(\phi_1 - \phi_2 - \phi_3 + \phi_4), \qquad (4)$$

two-body matrix element

$$\langle kl(s)|H_2|ij(s)\rangle = \langle kj|H_2|il\rangle - 2\langle jk|H_2|il\rangle,$$
 (5)
direct Coulomb exchange interaction

In which matrix element

$$\langle kj|H_2|il\rangle = -\int \int dr_1 dr_2 \varphi_h^{(j)*}(r_2) \varphi_e^{(k)*}(r_1) + \frac{e_0^2}{\epsilon_0 \epsilon |r_1 - r_2|} \varphi_e^{(i)}(r_1) \varphi_h^{(l)}(r_2)$$
(6)

@ t=1.2 nm, the order of lowest4 exciton states NOT change.

Safe to choose only lowest 4 pair states for analytical calculation. (e1h1, e2h1, e3h1, e4h1)

Analytical calculation (2)

Diagonal matrix element

(A) Coulomb integral same value for 4 diagonal elements

(B) exchange interaction integral (e1h1) $-2\langle ji|H_2|ij\rangle = 2 \int \int dr_1 dr_2 \frac{e_0^2}{\epsilon_0 \epsilon |r_1 - r_2|} \frac{1}{4}$ $* \left[\phi_1(r_1) + \phi_2(r_1) + \phi_3(r_1) + \phi_4(r_1)\right] \varphi_{h1}(r_1)$ $* \left[\phi_1(r_2) + \phi_2(r_2) + \phi_3(r_2) + \phi_4(r_2)\right] \varphi_{h1}(r_2)$

exchange interaction integral (e2h1, e3h1, e4h1)

$$-2\langle ji|H_2|ij\rangle = 2 \int \int dr_1 dr_2 \frac{e_0^2}{\epsilon_0 \epsilon |r_1 - r_2|} \frac{1}{4}$$

* $[\phi_1(r_1) + \phi_2(r_1) - \phi_3(r_1) - \phi_4(r_1)] \varphi_{h1}(r_1)$
* $[\phi_1(r_2) + \phi_2(r_2) - \phi_3(r_2) - \phi_4(r_2)] \varphi_{h1}(r_2)$

diagonal element of e1h1(A1) is larger than other three(T2)

Off-diagonal matrix element

(A)direct Coulomb integral

All off-diagonal elements for direct Coulomb integral are zero

(B) exchange interaction integral

All off-diagonal elements for exchange interaction integral are zero

> Conclusion of analytical calculation: The symmetry of lowest exciton state (t=1.2 nm) is T2

Symmetry break in core-shell tetrapod

For the imperfect cs-tetrapod, oscillator strength of the lowest-energy exciton state is NOT zero

Conclusion

- The electronic states of core-shell tetrapod with various shell thickness are calculated. Lowest 20 electron and hole wave functions have A1 or T2 symmetry.
- At t=1.2 nm, the carriers separation is not serious, core-shell tetrapod is not apparent type II heterostructure.
- Exciton states were investigated as a function of t. For large t, the lowest exciton state has T2 symmetry, which implys nonluminescence in emission spectrum.
- Core-shell tetrapod with broken symmetry shows non-zero oscillator strength for lowest exciton state.

Thank you for your attention!

