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Abstract: Acoustic landmine detection is 

accomplished using a loud speaker as an airborne 

source to generate low-frequency waves that 

enter the soil at a certain incident angle. At a 

specific frequency, the landmine will “vibrate” at 

resonance, imparting a certain velocity on the 

soil particles above it that is detected by a 

scanning Laser Doppler Vibrometer system.  The 

ability to mathematically predict the soil surface 

velocity plots created from these experiments 

would enable the technology to be implemented 

faster in more challenging environments.  An 

analytical solution
1
 was determined and has been 

compared to experimental results.
2
  However, the 

analytical problem demands significant time and 

computational resources.  A problem identical to 

the analytical solution was implemented with 

COMSOL
TM

, and has significantly reduced the 

computational time and resources necessary to 

find a solution while remaining accurate to the 

analytical result. 
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1. Introduction 

The analytical mathematical model
1
 of the 

buried landmine detection problem involved 

solving two Helmholtz equations in a 2-layer 

waveguide, subject to boundary conditions 

appropriate for mine detection (Fig. 1).  In the 

atmospheric layer, a point source (delta function) 

represented the loudspeaker.  The soil was 

modeled as a finite porous layer.  The top plate 

of the buried landmine was represented as a 

circular elastic membrane stretched flush over a 

cylindrical cavity in a rigid substrate beneath a 

porous layer. Mathematically, the homogeneous 

Helmholtz equation was used in the porous layer, 

with a Green‟s function representation of the 

membrane response.  In the analytical soil 

resonance predictions
1
, pressure was plotted as a 

function of frequency, and the resonances appear 

as local maximums and minimums.  

In comparing the experimental
2
 and 

analytical
1 
results, only the frequency at which 

the resonances occur is of importance, since this  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.  A schematic of the mathematical model developed to represent the landmine detection problem. 
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is what must be predicted mathematically to aid 

the experimenter in the field.  Similarly, in 

comparing the COMSOL
TM

 model developed in 

this paper to the analytical model, the resonant 

frequencies are of greater importance than the 

predicted amplitude of the response.  Several 

COMSOL
TM

 models have been run for 

comparison with the analytical models that were 

previously developed.
1 

 

2. Theory 

Derivation of the three-dimensional wave 

equation in an ideal gas was performed for the 

analytical computation,
3,4

 based on conservation 

of mass and conservation of momentum 

arguments.  Assuming time-harmonic motion, 

the wave equation becomes 

022  PkP , 

a Helmholtz equation, with
c

k


 , where   is 

the angular frequency and c  is the sound speed 

in the medium.   

Morse and Ingard
3
 argue that modifications 

are necessary for sound transmission in a porous 

media.  Thus, the wavenumber ( k ), in the soil 

(subscripted „s‟) becomes 
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where   is the flow resistivity and 
p  is the 

effective density in the soil. 

Finally, the delta „function‟ is customarily 

used to represent a point source radiating 

spherically.  A plane wave representation was 

also considered but was ultimately rejected due 

to the close proximity of the source, target, and 

area of interest. 

 

3. Governing Equations and Methods 

 
The Helmholtz equation described in the 

previous section was converted into cylindrical 

coordinates for the analytical analysis
1
 and 

separation of variables was applied to the partial 

differential equations.  Note that the area outside 

the cylinder in Fig. 1 retains the mathematics 

from a two layer waveguide.
1,5,6,7

  The Green‟s 

function was derived for a membrane, 

representing the top plate of the landmine.  

Continuity conditions were imposed between the 

cylinder containing the mine and the waveguide 

to find the analytical solution to the problem. 

 

3.1 Eigenvalues 

 
 A change of variables was performed to force 

the eigenvalues (ζmn and τmn) to occur at 

predictable intervals for ease of computation.  In 

order to perform these computations, parameters 

from D. Velea, R. Waxler, and J. Sabatier were 

used.
2
  The equation defining the eigenvalues is 
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(See appendix for variable definitions) 

 

3.2 Analytical Solution 

 

Let   arrD  :,  be the area occupied by 

a membrane with a point source at 

  0000 ,,, razr   with an atmosphere 

satisfying a pressure release condition at .azz   



Assume that total pressure is the sum of incident 

and scattered pressure. The incident pressure in 

air-soil waveguide in the absence of a membrane 

is 
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Using the eigenvalues and radial continuity 

conditions, the final velocity was found to be 
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for ar  , where     aamn zzz  sin   

and     aaamn zzz  cos' .                                                

The coefficients, mnA , are computed from an 

infinite set of algebraic equations that must be 

solved numerically from 
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4. Numerical Model 

 
The numerical model was created in 

COMSOL
TM

 using the pressure subsection of the 

acoustics module.  A twenty meter long and ten 

meter high rectangle was drawn to represent the 

atmosphere, and a twenty meter long and 0.075 

meter deep rectangle was drawn to represent the 

soil (Fig. 2).  A point source was implanted in 

the atmospheric layer, at (0.2, 2), corresponding 

to the analytical problem.  A “mine” was placed 

beneath the soil layer, drawn as a 0.03 by 0.07 

rectangle placed at (0, 0.105). 

The subdomain settings of density,  , and 

sound speed through the medium, c ,  were 

consistent with the analytical solution, with the 

exception of the membrane sound speed.  This 

was approximated from other plastics.
8
  The 

expression for the wavenumber in the membrane 

is analytically given by  

T

i
k mm  


2

, 

where  m
from Fig. 1.  The boundary 

settings were all set to continuity for the internal 

boundaries, and “Sound Hard Boundary” for the 

exterior boundaries.  This was consistent with 

the analytical problem.  The point at (0.2, 2) was 

set as a “Power Source” using the point settings, 

with a strength of 1 W. 



5. Experimental Results 

 
Preliminary results focusing on small 

frequency intervals around analytically predicted 

resonances showed expected behavior.  

However, once the frequency domain was 

expanded to the full range of 80 Hz to 300 Hz, 

these apparent “resonances” disappeared, 

indicating that they were small fluctuations in 

the pressure.   

The amplitude of the response is significantly 

affected by the power of the source.  Although 

the delta function was used analytically, a point 

source with unit power was applied in the 

numerical model.  This causes variation in the 

amplitude of the response, but does not affect the 

resonant frequencies. 

To improve the solution for comparison, 

certain changes were implemented.  Damping 

was added in the soil and mine subdomains to 

increase the frequency span of the resonances.  

Since the analytical model incorporated damping 

in these two layers using complex wavenumbers, 

this implementation was valid, although little 

damping was used to produce the analytical 

result.  Values and the types of damping were 

also varied in attempt to reproduce the analytical 

solution and ascertain the effects of the specific 

values on the problem.   

 Changes were also made in the processing 

and postprocessing of the solution for better 

comparison.  Rather than plotting the pressure, 

the velocity was plotted to allow direct 

comparison with the analytical solution.  While 

COMSOL
TM

 Script could have been used to plot 

the parameterized frequency values, the point 

selection in the cross sectional plot parameters 

menu was utilized to create the plots quickly and 

accurately with respect to the point of interest. 

 

6. Discussion 

 
Comparison of the analytical solution (Fig. 

3) to the base model (Fig. 4) showed good 

agreement on the soil-membrane resonance that 

occurred at 280f Hz.  Velea, Sabatier, and 

 
 

Figure 2.  The COMSOL representation of the analytical problem represented in Fig. 1.  The base model 

is exactly as shown in the figure.  The extended model increases the depth of the soil layer from 0.075 m 

to 10 m, extending the soil layer while the mine remains in the same position. 



Waxler
2
 note that this is the first acoustical 

resonance, defined as the frequency at which 

“the layer of soil between the top of the mine and 

the surface of the soil vibrates at maximum 

amplitude.”
2
  The COMSOL

TM
 model also 

remained stable at this point, whereas the 

analytical model was difficult to keep stable 

around this point. 

The mechanical resonances (defined as “the 

resonant frequencies of any mechanical system 

for which the input mechanical reactance goes to 

zero”
2
) did not appear in the COMSOL

TM
 model.  

Since these resonances were quite narrow in the 

analytical model ( 100f Hz and 225f Hz), 

it is possible that these resonances were too 

narrow to detect, even with large damping and 

small sampling (0.25 Hz). 

The wide resonance at 240f Hz was 

determined to be a soil resonance,
1
 which was 

captured in the COMSOL
TM

 model as well.  The 

extended model with the same analytic 

properties (Fig. 5) also demonstrated strong 

resonances at 240f Hz and 280f Hz. 

However, another strong resonance is 

observed at 175f Hz, which is not seen in the 

base model.  This apparent resonance was 

consistent without damping, or with other types 

of damping.  Mathematically, the extended 

problem is very difficult to solve and was not 

approached analytically.  It is possible that this 

resonance is from the column of soil beneath the 

mine, or an interaction between the sides of the 

mine and the soil.  However, the presence of the 

two expected resonances reinforces a certain 

confidence in the solution. 

In Fig. 6, the predicted effects of the 

landmine size are considered.  In the analytical 

solution, the resonant frequency decreases and 

the response amplitude increases with an 

increase in landmine size.  In the profile (a 

significant increase in the mine size), the large 

resonance appears to shift to 220f Hz.  This 

shift of approximately 60 Hz is not proportional 

to the analytical shift; however, the analytical 

data does not extend to 40.0a m, and shows 

indications of non-linear behavior. 

The predicted effects of the mine depth are 

shown in Fig. 7.  Analytical predictions indicate 

that increasing soil depth increases the resonant 

frequency.  There were no conclusive predictions 

about the amplitude from the soil depth.  A 

frequency shift has appeared to occur, but a 

second resonance has also appeared that cannot 

be attributed to the soil.  Analytically, soil 

resonances are predicted at 320,230,140f Hz, 

   
Figure 3. Analytical solution of the landmine         Figure 4. COMSOL solution for the landmine 

detection problem for the Sabatier2 parameters.        detection problem for the Sabatier2 parameters. 

 
 

Figure 5.  COMSOL solution for the extended  

landmine detection problem. 



which do not account for the extra resonances at 

that depth.  It is possible that the additional depth 

created another acoustical resonance. 

 

7. Conclusions 
 

In the field of physical mine detection, 

information speed and clarity is very important.  

The analytical solution of the landmine detection 

problem in Fig. 1 took approximately 6-7 months 

to derive, understand, code, and analyze 

solutions.  COMSOL
TM

 reduced this time to 

approximately an hour per solution, once the 

model had been developed.   

The solutions produced by COMSOL
TM

 were 

comparable to the analytical solution.  Strong 

acoustical landmine resonances were predicted 

by the analytical
1
 and COMSOL

TM
 models, 

which matched the experimental data.
2
  Although 

there were no mechanical resonances predicted 

by the COMSOL
TM

 models, the matching 

acoustic and soil resonances are quite significant 

across the experimental, analytical, and 

numerical implementations. 

The solutions for comparison of the landmine 

size and depth produced some interesting results 

that will require more analysis of the analytical 

solution.  Due to the computational time, the 

analytical comparison models were only run for 

small frequency ranges.  The more detailed 

COMSOL
TM

 models have indicated more 

complicated behaviors than the analytical models 

that need to be investigated further. 

Overall, the COMSOL
TM

 models developed 

in this analysis and comparison have confirmed 

the analytical solution, while raising interesting 

questions to further research in this area.  The 

computational processing time of the analytical 

model restricted the frequencies of consideration 

in the model analysis, which prevented a full 

frequency analysis with regard to the mine 

properties.  The COMSOL
TM

 models have raised 

these important questions, which will help 

further research in the field of acoustic landmine 

detection. 
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10. Appendix 
 

Table 1: Definition of Variables (In order of 

appearance) 

Variable Definition 

P  Pressure (Pa) 

k  Wavenumber (1/m), may be 

subscripted with „a‟, 

atmospheric, or „s‟ soil 

(unsubscripted  - membrane) 

  Angular Frequency (Hz) 

c  Sound Speed (m/s), may be 

subscripted with „a‟, 

atmospheric, or „s‟ soil 

  Flow Resistivity 

p  Effective Density 

nmnmn  ,,  Eigenvalues  

  Density (kg/m
3
), may be 

subscripted with „a‟, 

atmospheric, „m‟ membrane, or 

„s‟ soil 

T  Membrane Tension 

a  Diameter of the Landmine 

az  Height of the atmospheric layer 

(m) 

sz  Depth of soil layer (m) 

 zr ,,  Position of interest (m) 

 000 ,, zr   Source location (m) 

B  Arbitrary coefficient 

m  Coefficient from the time 

derivative in the differential 

equation for the motion of a 

membrane exposed to pressure 

Table 2: Properties of COMSOL Graphics 
 

Figure  

Number 

Notes 

4 Damping in the soil - 0001fR  

Damping in the mine - 100  

5 Damping in the soil - 0001fR  

Damping in the mine - 100  

6 40.0a m, damping is consistent 

with Fig. 4 and 5 

7 1sz m, damping is consistent 

with Fig. 4 and 5 

 


