The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Plasmonic Wire Grating (Wave Optics)

In this model, a plane wave is incident on a wire grating on a dielectric substrate. Coefficients for transmission, reflection, and first order diffraction are computed for different angles of incidence The model is set up for one unit cell of the grating, flanked by Floquet boundary conditions describing the periodicity. As applied, this condition states that the solution on one side of the ...

Nanorods

A Gaussian electromagnetic wave is incident on a dense array of very thin wires (or rods). The distance between the rods and, thus, the rod diameter is much smaller than the wavelength. Under these circumstances, the rod array does not function as a diffraction grating (see the Plasmonic Wire Grating model). Instead, the rod array behaves as if it was a continuous metal sheet for light polarized ...

Mach-Zehnder Modulator

A Mach-Zehnder modulator is used for controlling the amplitude of an optical wave. The input waveguide is split up into two waveguide interferometer arms. If a voltage is applied across one of the arms, a phase shift is induced for the wave passing through that arm. When the two arms are recombined, the phase difference between the two waves is converted to an amplitude modulation. This is a ...

Directional Coupler

Two embedded optical waveguides in close proximity form a directional coupler. The cladding material is GaAs and the core material is ion-implanted GaAs. The waveguide is excited by the two first supermodes of the waveguide structure - the symmetric and antisymmetric modes. Two numeric ports are used on both the exciting boundary and the absorbing boundary, to define the two modes. A boundary ...

Gaussian Beam Incident at the Brewster Angle

This model demonstrates the polarization properties for a Gaussian beam incident at an interface between two media at the Brewster angle. The model shows how to use the Electromagnetic Waves, Beam Envelopes physics interface with a User defined phase specification. Matched Boundary Condition features are used for absorbing waves incident to boundaries at non-normal directions.

Multipole Analysis of Electromagnetic Scattering

The multipole expansion is a powerful tool for analyzing electromagnetic waves scattered by small objects. In the expansion, the scattered field is represented as a superposition of the fields created by a finite set of point multipoles. Each point multipole is connected to a unique electric current mode in the object. This connection can be harnessed to design scatterers with prescribed ...

Fabry-Perot Cavity

This is an example of a Fabry-Perot cavity, the simplest optical resonator structure. It is a classical problem in optics and photonics. Two methods are shown for computing the Q-factor. The losses in this model are purely via radiation away from the resonator.

Fiber Simulator

The transmission speed of optical waveguides is superior to microwave waveguides because optical devices have a much higher operating frequency than microwaves, enabling a far higher bandwidth. Single-mode step-index fibers are used for long-haul (even transoceanic) communication, whereas both graded-index and step-index multimode fibers are used for short-distance communication, for example, ...

Modeling of Negative Refractive Index Metamaterial (Wave Optics)

It is possible to engineer the structure of materials such that both the permittivity and permeability are negative. Such materials are realized by engineering a periodic structure with features comparable in scale to the wavelength. It is possible to model both the individual unit cells of such a material, as well as, to model to properties of a bulk negative index material. This example ...

Defining a Mapped Dielectric Distribution of a Metamaterial Lens (Wave Optics)

In this example, the properties of an engineered metamaterial are modeled by a spatially varying dielectric distribution. Specifically, a convex lens shape is defined via a known deformation of a rectangular domain. The dielectric distribution is defined on the undeformed, original rectangular domain and is mapped onto the deformed shape of the lens. Although the lens shape defined here is ...