The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Motion of Trapped Protons in Earth's Magnetic Field

This model demonstrates the path of non-relativistic protons within Earth's magnetic field. Due to the dipole nature of Earth's magnetic field, charged particles, such as electrons and protons, can get trapped in stable configurations within it for long periods of time. These configurations involve the particles rapidly bouncing from magnetic pole to magnetic pole, and drifting around the ...

Shell Conduction

This model simulates a static analysis of heat conduction in a thin conductive shell. This is a benchmark model where the result is compared with a NAFEMS benchmark solution.

Stefan Tube

This example illustrates the use of the Maxwell-Stefan diffusion model available with the Transport of Concentrated Species interface. It models multicomponent gas-phase diffusion in a Stefan tube in 1D. In this case, it is a liquid mixture of acetone and methanol that evaporates into air. The concentration profiles are modeled at steady-state and validated against experimental data by Taylor ...

Nonisothermal HI Reactor

In the case of a perfectly mixed nonisothermal system, you have to set up both the time-dependent material and energy balances. There are no spatial concentration gradients because the system is perfectly mixed, so the Reaction Engineering interface can create a model without evaluating the material-transport properties.

Quadrupole Mass Filter

A quadrupole mass filter (QMF) is a key component of a modern mass spectrometer. A QMF uses direct current (DC) and alternating current (AC) electric fields to analyze positive or negative ions by mass to charge ratio. A QMF consists of 4 parallel rods spaced equidistantly, the ratio of the rod radius to the radius of the inscribed circle is 1.148. Opposite pairs of rods are electrically ...

Thermal Bridges in Building Construction - 2D Composite Structure

This example studies heat transfer in a composite two-dimensional structure. Four materials with distinct thermal conductivities k compose the structure. The top and bottom boundaries are facing environments respectively at 0°C and 20°C. The temperature distribution and the heat flux through the structure are compared with published data. This example corresponds to the case 2 described in ...

Crevice Corrosion of Iron in an Acetic Acid/Sodium Acetate Solution

Mass transport limitations within thin crevices can often result in the local electrochemistry to differ significantly between the crevice opening (mouth) and end (tip), and as a result of the differences in local chemistry, corrosion may occur. This example models crevice corrosion of iron in an acetic acid/sodium acetate solution. The model reproduces the results of Walton.

Geometric Parameter Optimization of a Tuning Fork

This model computes the fundamental eigenfrequency and eigenmode for a tuning fork that is synchronized from SolidWorks via the LiveLink interface. The length of the fork is then optimized so that the tuning fork sounds the note A, 440 Hz.

Electrodeposition of a Microconnector Bump with Deforming Geometry in 3D

This model simulates the shape evolution of a microconnector bump over time as copper deposits on an electrode surface. Transport of cupric ions in the electrolyte occurs by convection and diffusion. The electrode kinetics are described by a concentration dependent Butler-Volmer expression. The model is an extension to 3D of the Electrodeposition of a Microconnector Bump in 2D example.

Caughey-Thomas Mobility

With an increase in the parallel component of the applied field, carriers can gain energies above the ambient thermal energy and be able to transfer energy gained by the field to the lattice by optical phonon emission. The latter effect leads to a saturation of the carriers mobility. The Caughey Thomas mobility model adds high field velocity scattering to an existing mobility model (or to a ...