Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Optimizing a Thermal Process

A thermal processing scenario is modeled whereby two heaters raise the temperature of a gas flowing through a channel. The Optimization Module is used to find the heater power to maximize the outflow temperature, while maintaining a constraint on the peak temperature at the heaters themselves.

Radiative Heat Transfer in a Utility Boiler

This model uses the discrete-ordinates method (DOM) to analyze the radiative heat transfer in a utility boiler with internal obstacles. DOM is one of the most useful radiation models for prediction of radiative heat fluxes on the furnace walls of a combustion chamber. With this model, the behavior of the temperature and heat flux within the furnace and on the heat surfaces can be easily obtained ...

Composite Thermal Barrier

This example shows how to set up multiple sandwiched thin layers with different thermal conductivities in two different ways. First, the composite is modeled as a 3D object. In the second approach the Thin thermally resistive layer boundary condition is used to avoid resolving the thin domains. The technique is useful when modeling heat transfer through thermal barriers like multilayer coatings.

Radiative Cooling of a Glass Plate

When producing glass, the glass melt is cooled down through radiation to form the final shape, subjecting it to stresses. Numerical treatment of radiative heat transfer, using the Radiative Transfer Equation (RTE), helps to optimize this process. COMSOL Multiphysics provides three discretization methods for modeling radiation in participating media and solving the RTE: the Rosseland ...

A Warm Sunny Day on the Beach under a Parasol

This model illustrate how to model thermal effects of the sun as an external radiative source and considers wavelength-dependent surface emissivities. Two styrofoam coolers are exposed to ambient conditions. A parasol provides shade for one of the coolers for most of the day. The temperature of the beverage cans in the coolers is computed over time.

Radiative Heat Transfer in Finite Cylindrical Media—P1 Method

This model uses the Discrete-Ordinates method (DOM) to solve a 3D radiative transfer problem in an emitting, absorbing, and linear-anisotropic scattering finite cylindrical medium. Using the S6 quadrature of DOM leads to faster and more accurate results, which are needed in combined modes of heat transfer. The calculated incident radiation and heat fluxes agree well with published results ...

Heat Sink with Fins

A parameterized heat sink geometry is studied in combination with conjugate heat transfer. The fluid flow is modeled using the algebraic yPlus model. The app can simulate different numbers of heat sinks, as well as their dimensions atvariable cooling air velocities and heat source rates. The output gives the cooling power and the average pressure drop over the length of the system. The more fins ...

Parameterized Window Geometry

During the design of a building, environmental issues have gained considerable influence in the entire project. One of the first concerns is to improve thermal performances. In this process, simulation software are key tools to model thermal losses and performances in the building. The international standard ISO 10077-2:2012 deals with thermal performance of windows, doors and shutters. It ...

Temperature Field in a Cooling Flange

A cooling flange in a chemical process is used to cool the process fluid, which flows through the flange. The surrounding air cools the flange via natural convection. In the stationary model, the forced convection to the process fluid is modeled using a constant heat transfer coefficient. The natural convection cooling is modeled using tabulated empirical transfer coefficients that are ...

Shell Conduction

This model simulates a static analysis of heat conduction in a thin conductive shell. This is a benchmark model where the result is compared with a NAFEMS benchmark solution.

Quick Search