The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Permanent Magnet

As an example of a magnetostatic problem, consider how to model a horseshoe-shaped permanent magnet. One way is to treat the entire magnet as a ferromagnetic material, where the two end sections are defined as being pre-magnetized in different and opposite directions.

E-Core Transformer

This is the transient model of a single phase E-core transformer using a Multi-Turn Coil Domain. The model includes the effect of a nonlinear B-H curve in the core and shows how to connect the transformer model to the external circuits using Electric Circuit interface. The simulation is performed for two different cases; the first one with a unity turn ratio and second one with a turn ratio of ...

Computing Capacitance

A capacitor, in its simplest form, is a two terminal electrical device that stores electric energy when a voltage difference is applied across the terminals. The stored electric energy is proportional to the applied voltage squared and is quantified by the capacitance of the device. This model introduces a model of a simple capacitor, the electric field and device capacitance are solved for ...

Modeling of a 3D Inductor

Inductors are used in many applications for low pass filtering or for impedance matching of predominantly capacitive loads. They are used in a wide frequency range from near static up to several MHz. An inductor usually has a magnetic core to increase the inductance, while keeping its size small. The magnetic core also reduces the electromagnetic interference with other devices as the magnetic ...

Magnetic Field of a Helmholtz Coil

A Helmholtz coil is a parallel pair of identical circular coils spaced one radius apart and wound so that the current flows through both coils in the same direction. This winding results in a uniform magnetic field between the coils with the primary component parallel to the axes of the two coils. Applications of Helmholtz coils range from canceling the earth’s magnetic field to generating ...

Voltage Induced in a Coil by a Moving Magnet

A magnet moving axially through the center of a coil will induce a voltage across the coil terminals. One practical application of this is in shaker flashlights, where the flashlight is vigorously shaken back and forth, causing a magnet to move through a multi-turn coil, which provides charge to the battery. In this model, the motion of a magnet through a coil is modeled, and the induced ...

Generator in 2D

In this model, a rotor with permanent magnets and a nonlinear magnetic material rotates within a stator of the same magnetic material. The generated voltage in windings around the stator is calculated as a function of time. COMSOL Multiphysics models the rotation with assemblies and identity pairs. The nonlinearity of the magnetic material is also taken into account using an interpolation ...

Multi-Turn Coil Above an Asymmetric Conductor Plate

This model solves the Testing Electromagnetic Analysis Methods (TEAM) problem 7, “Asymmetrical Conductor with a Hole”—a benchmark problem concerning the calculation of eddy currents and magnetic fields produced when an aluminum conductor is placed asymmetrically above a multi-turn coil carrying a sinusoidally varying current. The simulation results at specified positions in space are compared ...

Multi-Turn Coil Winding around a Ferromagnet

A demo model of a 50 Hz AC coil wound around a ferromagnetic (linear) core. The model is intended as a tutorial to show how to create a relatively complex geometry and set up the new Multi-Turn Coil features for the simulation. The model requires the Design module to fillet the edges of the block.

Mutual Inductance and Induced Currents in a Multi-Turn Coil

The mutual inductance and induced currents between a single turn primary and twenty turn secondary coil in a concentric coplanar arrangement is computed using a frequency domain model. The secondary coil is modeled using a homogenized approach which does not explicitly consider each turn of the coil. The results are compared against analytic predictions.

1 - 10 of 85 First | < Previous | Next > | Last