## Efficiently Analyze Acoustic Streaming with Multiphysics Modeling

##### Caty Fairclough July 31, 2017

One application of acoustic streaming (AS), the process of using sound waves to generate steady fluid motion, is adjusting grain morphology during the metal solidification process. Since ensuring the best product possible is key, engineers in the metal processing industry must improve AS, which can require costly field tests and test rigs. To see if simulation can be used to reduce this need, researchers analyzed AS treatment with the COMSOL Multiphysics® software.

Read More

### How to Create Graphs with Two Y-Axes in COMSOL Multiphysics®

##### Andrew Griesmer July 27, 2017

Have you ever tried to plot multiple quantities on one graph, only to realize that the scales don’t match up? You can solve this problem by adding a second y-axis to your 1D plot to include two scales of values. In the video below, we introduce a case where you would want two y-axes. We then show you how to add a second y-axis to your graph and create helpful annotations in the COMSOL Multiphysics® software.

Read More

### How to Model Generalized Plane Strain with COMSOL Multiphysics®

##### Peter Yakubenko July 26, 2017

Many elongated structures can be modeled effectively using 2D representations of their cross sections. A typical assumption is the plane strain approximation, which implies that all out-of-plane strain components are zero. This assumption is valid when the out-of-plane deformation is restrained; for example, when the ends of the structure are fixed. However, in many cases, the structure is free to expand in the out-of-plane direction. Let’s discuss how to model this case, which is sometimes called generalized plane strain.

Read More

### Modeling Aeroacoustics with the Linearized Navier-Stokes Equations

##### Mads Herring Jensen July 25, 2017

Detailed modeling of the complex interaction of flow and acoustics is achieved in the COMSOL Multiphysics® software and add-on Acoustics Module using the linearized Navier-Stokes interfaces. With the release of version 5.3, the capabilities were further extended with the addition of a new stabilization scheme. This allows robust simulations of systems with acoustic properties that are modified by or depend on a turbulent background flow; e.g., automotive exhaust systems. Here, we introduce important modeling concepts and present application examples.

Read More

### Investigating the Behavior of an Ancient Organism with CFD Simulation

##### Caty Fairclough July 24, 2017

If you were to travel back in time half a billion years to the Ediacaran period, you would find seas full of strange-looking creatures known to paleontologists as the ‘Ediacara biota’, the world’s first large, complex, multicellular lifeforms. We still have a lot to learn about these ancient creatures, including if they could move and how they fed. A research team sought answers to these questions by using CFD simulation to study an extinct organism from Earth’s early oceans: Parvancorina.

Read More

### New FEM Book Offers Modeling Guidance for Biomedical Applications

##### GuestGuigen Zhang July 20, 2017

Today, guest blogger Guigen Zhang, professor of bioengineering at Clemson University, talks about his new textbook on computational modeling for biomedical applications. This blog post discusses Integrative Engineering: A Computational Approach to Biomedical Problems, including its content and the intended readers; the purpose and motivation for writing this book; and most importantly, how getting an in-depth understanding of the “intricate machinery” of computational modeling will help make you a better modeler.

Read More

### Introduction to Designing Microwave Circuits Using EM Simulation

##### Jiyoun Munn July 19, 2017

When simulating electromagnetic devices, a common mistake is putting everything into a model at the same time, including a complicated geometry, complex material properties, and a mixed bag of boundary conditions. This makes the model run for a long time and you might get frustrated when your simulation results are physically wrong, without any clues as to why. Today, we will discuss how to efficiently set up simple RF, microwave, and millimeter-wave circuit models in the COMSOL Multiphysics® software.

Read More

### Celebrating the Life of Robert Hooke

##### Caty Fairclough July 18, 2017

Robert Hooke was a Renaissance man with interests including mechanics, timekeeping, biology, art, and architecture. He led an accomplished life and is known for his work in many diverse fields, as well as for writing a popular book on microscopy, Micrographia. Let’s take a step into the past to explore Robert Hooke’s life and achievements.

Read More

### Optimizing the Design of Thermal Actuators for Use in Microsatellites

##### Bridget Cunningham July 17, 2017

On the morning of March 22, 2006, NASA launched their Space Technology 5 mission. For about three months, miniaturized satellites explored Earth’s magnetic fields collecting high-quality measurements. Beyond gathering scientific data, the mission represents a turning point. Instead of large traditional satellite missions, miniaturized technology is taking precedence in space exploration. And within these systems, MEMS technology could serve as a means of active thermal control. Further improvements are already taking shape with the help of multiphysics simulation.

Read More

### Introduction to Modeling Surface Reactions in COMSOL Multiphysics®

##### Edmund Dickinson July 13, 2017

In biophysics, electrochemistry, and the design of catalytic reactors, researchers and engineers exploit the special chemical and physical properties of solid surfaces involving both gas-solid and liquid-solid interfaces. This blog post discusses the basics of the kinetics of surface reactions at simple surfaces and how they can be modeled with the COMSOL Multiphysics® software. In a subsequent blog post, we will look at how mass transport and reaction kinetics at surfaces are described for homogenized porous media.

Read More

### How to Perform Various Rotor Analyses in the COMSOL® Software

##### Prashant Srivastava July 12, 2017

Vibration in rotating machinery is very sensitive to the geometric, structural, and inertial properties of the various rotating and stationary components interacting with each other. These properties include the location of the mounted components and their inertial properties, bearing characteristics, and shaft properties. To understand the effects of these parameters, start with a simple model and perform various analyses to correlate the rotor response within the same model. Let’s demonstrate this process with a simply supported beam rotor example.

Read More

1 4 5 6 7 8 116