Improving IFE Target Fabrication with a Droplet Microfluidics Method

Caty Fairclough September 29, 2017

Fusion energy is 30 years away — and always will be. The joke certainly rings true for inertial fusion energy (IFE), which must overcome a number of obstacles before it can become a reality. For example, the current methods for creating IFE targets cannot meet the predicted demand and cost requirements. To solve this problem, researchers designed a new microfluidics method that could address these production bottleneck issues while complying with the strict geometrical requirements of IFE target design.

Read More

Andrew Young September 27, 2017

When simulating flow in porous media, it can be efficient to simplify the geometric complexity of the real porous material using a homogenized macroscale approach. But what if we don’t know what the effective macroscopic properties are? Here, we look at how to extract the macroscopic flow properties of porosity and permeability from a fully resolved microscale submodel.

Read More

Categories

Caty Fairclough September 8, 2017

Generating complex emulsion droplets that can be used to fabricate highly compartmentalized microconstructs is difficult to achieve with classic droplet-forming fluidic junctions. These junctions have simple geometries, which can result in a narrow range of flow rate control. To address this issue, one research group designed an oscillatory microfluidic junction with a more complicated geometry. This junction, called the bat-wing junction, can consistently produce uniform and complex double-emulsion droplets, with bespoke components and encapsulated reagents.

Read More

Categories

Phillip Oberdorfer September 6, 2017

When simulating heat transfer in fluids with forced convection, we can often neglect the influence of temperature variations on the flow field unless the requirements on accuracy are very high. Computing the flow field independently might substantially decrease the computational cost with a negligible impact on accuracy in the solution. In this blog post, we demonstrate the advantages of using a one-way coupling in the COMSOL Multiphysics® software with a nonisothermal flow example.

Read More

Categories

Bridget Paulus August 29, 2017

Nonconducting film (NCF) is an emerging underfill adhesive technology used to assemble electronic components in the microelectronics industry. Optimizing the NCF material and process can be difficult, as they must achieve a fast bonding time, high degree of cure, and correct underfill fillet shape. Achieving a successful bond depends on the interaction between the material’s chemorheology and the bonding process parameters. To understand these interactions, Veryst Engineering simulated the flow and cure on an NCF during the thermocompression bonding process.

Read More

Categories

Bridget Cunningham August 28, 2017

Pipelines are used to transport petroleum products and natural gas across long distances in cold environments. Because of this, petroleum mixtures may need to be preheated after being transported in pipelines before a refining process can begin. However, as the oil is pumped through the pipeline, heat is generated from the fluid itself as it flows. To keep costs down and the heat inside the pipe, the pipeline insulation can be optimized using models and simulation.

Read More

Nancy Bannach August 21, 2017

As of version 5.3 of the COMSOL Multiphysics® software, the Subsurface Flow Module includes useful new features that enable you to set up complex modeling tasks more efficiently. For example, when modeling wells, meshing is significantly easier and is more intuitive to set up with the Well feature. In this blog post, we look at the Well feature, discussing how to use it and ways it enhances the modeling process.

Read More

Categories

Caty Fairclough August 16, 2017

Research shows that microgravity exposure has an effect on the human body, such as by suppressing immune cell activity. This phenomenon also affects cancer cell migration. Making use of this fact can lead to the identification of new therapeutic targets for metastatic cancer cells. In this blog post, we’ll discuss how a research team used the COMSOL Multiphysics® software to design a culturing system to study cancer cell migration in microgravity.

Read More

Siva Sashank Tholeti August 10, 2017

Have you ever been curious about how to model supersonic flows, like those around Concorde or fighter jets? Generally, this process requires the resolution of shocks or expansion fans in the flow. Resolving discontinuities (e.g., shock waves) requires a high resolution and the numerical stability of strongly coupled mass, momentum, and energy conservation equations for fluid flow. Let’s discuss how to model supersonic flow past a diamond airfoil, which involves resolving shocks and expansion fans.

Read More

Categories

Caty Fairclough August 9, 2017

Studying vacuum system designs can be difficult, since some analysis methods only work when the relative speed of the gas molecules is very large compared to the velocity of the enclosing walls. This is not the case for turbomolecular pumps, which we can model and analyze using a Monte Carlo approach and the Rotating Frame feature in the COMSOL Multiphysics® software. Let’s check out one example below.

Read More

Caty Fairclough August 2, 2017

When designing heat sinks, it’s important to accurately measure their cooling capacity. By modeling heat transfer in these systems, we can calculate the temperature of the electronic components. The modeling approach we use will affect the accuracy of the results and the efficiency of the simulation. In this blog post, we compare two modeling approaches for analyzing electronic chip cooling. We also discuss new features in the COMSOL Multiphysics® software that make it easier to set up heat sink geometries.

Read More


Categories


Tags

1 2 3 17