Electrical

Walter Frei | June 30, 2015

Over the last several weeks, we’ve published a series of blog posts addressing the various domain and boundary conditions available for wave electromagnetics simulation in the frequency domain; as well as modeling, meshing, and solving options. In this blog post, I will tie all of this information together and provide an introduction to the various types of problems that you can solve in the RF and Wave Optics modules.

Read more ⇢
Brianne Costa | June 23, 2015

As you leave for work, your garage door closes and texts your office coffeemaker to start brewing a fresh pot. During the day, your sprinkler system gets a weather report that it’s going to rain and cancels its afternoon watering. This isn’t a futuristic television show, it’s the Internet of Things, and with the next generation of wireless communication, 5G, it’s coming soon. First, we need to optimize the performance of existing mobile device antennas.

Read more ⇢

Article Categories

Walter Frei | June 22, 2015

A question that we are asked all of the time is if COMSOL Multiphysics can model laser-material interactions and heating. The answer, of course, depends on exactly what type of problem you want to solve, as different modeling techniques are appropriate for different problems. Today, we will discuss various approaches for simulating the heating of materials illuminated by laser light.

Read more ⇢
Walter Frei | June 18, 2015

When solving wave electromagnetics problems with either the RF or Wave Optics modules, we use the finite element method to solve the governing Maxwell’s equations. In this blog post, we will look at the various modeling, meshing, solving, and postprocessing options available to you and when you should use them.

Read more ⇢

Article Categories

Jennifer Segui | June 11, 2015

At Boeing, innovation comes in the form of modern aircraft such as the 787 Dreamliner, whose body is made up of over 50% carbon fiber composite. While incredibly lightweight and strong, such aircraft composites are not inherently conductive, thus requiring additional protective coatings to mitigate lightning strike damage. Here, we describe how multiphysics simulation is used to evaluate thermal stress and displacement in the protective coatings that undergo temperature fluctuations associated with the typical flight cycle.

Read more ⇢
Walter Frei | May 27, 2015

Whenever we are solving a wave electromagnetics problem in COMSOL Multiphysics, we build a model that is composed of domains and boundary conditions. Within the domains, we use various material models to represent a wide range of substances. However, from a mathematical point of view, all of these different materials end up being handled identically within the governing equation. Let’s take a look at these various material models and discuss when to use them.

Read more ⇢

Article Categories

Caty Fairclough | May 26, 2015

Cars have to exist in a variety of environmental conditions. They need to handle environmental changes such as temperature fluctuations. Therefore, it is important to create parts that can handle these conditions. An investigation into the functionality of an inductive position sensor was presented during the COMSOL Conference 2014 in Cambridge.

Read more ⇢

Article Categories

Matt Pooley | May 18, 2015

Thanks to the Semiconductor Module and the Application Builder, developing custom optoelectronic simulation apps has never been easier. In this blog post, we show you how to turn a model of an LED device into a user-friendly application that can be used to assess the impact of different designs on the LED’s emission characteristics and performance. We also demonstrate the use of custom methods to manipulate the solution data, enabling the easy creation of bespoke analysis tools.

Read more ⇢
Walter Frei | May 14, 2015

Metals are materials that are highly conductive and reflect an incident electromagnetic wave — light, microwaves, and radio waves — very well. When using the RF Module or the Wave Optics Module to simulate electromagnetics problems in the frequency domain, there are several options for modeling metallic objects. Here, we will look at the Impedance and Transition boundary conditions as well as the Perfect Electric Conductor boundary condition, offering guidance on when to use each one.

Read more ⇢

Article Categories

Brianne Costa | May 13, 2015

Piezoelectric valves are opened and closed by stacked piezoelectric actuators that are positioned above a seal. By applying a voltage to the stacked piezoelectric actuator, it can be made to expand or contract and the resulting deformation is used to open and close the valve. In this blog post, we feature a tutorial model of a stacked piezoelectric actuator in a pneumatic valve, new with COMSOL Multiphysics version 5.1.

Read more ⇢
Christopher Boucher | May 6, 2015

Thin dielectric films are versatile tools for controlling the propagation of light. They can be used, for example, as anti-reflective coatings to reduce the amount of stray light in a system. They can also be used as low-loss reflectors or as filters to selectively transmit certain frequencies of radiation. Here, we’ll discuss some of the built-in tools that the Ray Optics Module provides for modeling optical systems with dielectric films.

Read more ⇢

Article Categories

1 2 3 4 5 15