See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Bioscience and Bioengineeringx

Large Scale Invasion Of New Species And Of Genetic Information

O. Richter, F. Suhling, and S. Moenickes
Technische Universität Braunschweig, Germany

The spatial dynamics of the invasion of new species and genetic dispersal is studied under the presumption of rising temperature by using a coherent approach of coupled partial differential equations of the reaction diffusion type. The nonlinear reaction terms model the population ... Read More

Physical and FEM Simulation of Microprobe Insertion into Brain Tissue

A. Eed Olamat, U. Hofmann, B. Pohl, and N. Nkemasong
University of Lübeck, Institute for Signal Processing, Lübeck, Germany

In order to investigate the implantation of microprobes into brain tissue, we developed a finite-element and a physical model to replace real biological tissue for mechanical testing. Penetrating forces of a tungsten indenter into a layered structure was investigated with different ... Read More

Simulation of the Spread of Epidemic Disease Using Persistent Surveillance Data

Y. Liang[1], Z. Shi[1], S. Sritharan[1], and H. Wan[2]
[1]Central State University, Wilberforce, OH, USA
[2]Wright State University, Dayton, OH, USA

This paper proposes a novel data-mining framework to simulate the spread of epidemic diseases using persistent surveillance data. The framework is formulated by merging the persistent surveillance data about epidemics, geographic information and the dynamics of disease into a heat ... Read More

On A Particle Tracking Technique To Predict Disinfection In Drinking Water Treatment Systems

B.A. Wols[1,2], J.A.M.H. Hofman[1,2], W.S.J. Uijttewaal[2], and J.C. van Dijk[2]
[1]KWR Watercycle Research Institute, Nieuwegein, The Netherlands
[2]Delft University of Technology, Niewegein, The Netherlands

Disinfection of drinking water is required to prevent the outbreak of water-borne diseases. Different treatment steps are available to disinfect the water, such as chlorination, ozonation or UV irradiation. The hydrodynamics of these processes play an important role in their performance. ... Read More

Comparison of Finite Element and Monte Carlo Simulations for Inhomogeneous Advanced Breast Cancer Imaging

Y. Xu, and Q. Zhu
University of Connecticut, Storrs, CT, USA

Three-dimensional FEM method provided by COMSOL is used to model an inhomogeneous advanced breast tumor of different optical properties for outer layer and inner core in a semi-infinite medium. The running time of FEM by COMSOL for one source and 14 detectors is 17.658s and which of ... Read More

Multiphysics Modeling of Cellular Arrays Using Periodic Minimal Surfaces – A Drug and Gene Delivery Application

J.I. Rey, A.J. Llewellyn, R.J. Connolly, J.P. Jimenez, A.M. Hoff, and R.A. Gilbert
University of South Florida, Tampa, FL, USA

Minimal surfaces are found in nature from crystalline structures to biological nano and micro structures such as biomembranes, and osseous formations in sea urchin. An application to electrically mediated drug and gene delivery is presented. Periodic level surfaces which approximate ... Read More

Numerical Investigation of a Time-dependent Magnetic Actuation Technique for Tagging Biomolecules with Magnetic Nanoparticles in a Microfluidic System

A. Munir, J. Wang, Z. Zhu, and H.S. Zhou
Worcester Polytechnic Institute, Worcester, MA, USA

The magnetic body forces that act on mono-dispersed magnetic nanoparticles (MNPs) tagged biomolecules in a microfluidic system can be efficiently used in various applications that involve separation and detection including DNA and protein analysis, bio-defense, drug delivery, and ... Read More

Modeling Bacterial Clearance Using Stochastic-Differential Equations

A. Jeremic, and A. Atalla
McMaster University, Hamilton, ON, Canada

In this paper, we develop a mathematical model to simulate the movement of bacteria into and within a capillary segment. Also, we model the transportation through capillary walls by means of anisotropic diffusivity that depends on the pressure difference across the capillary walls. By ... Read More

Investigations on Natural Frequencies of Individual Spherical and Ellipsoidal Bakery Yeast Cells

M.M Zarandi[1], A. Bonakdar[1], and I. Stiharu[2]
[1]McGill University, Montreal, QC, Canada
[2]Concordia University, Montreal, QC, Canada

In this paper, a Finite Element (FE) and scaled-up experimental modal analysis are employed to estimate the natural frequencies of individual spherical and ellipsoidal cells. It is apparent that the mechanical properties of the living cells and particularly the natural frequencies might ... Read More

Non-Newtonian Hemodynamics and Shear Stress Distribution in Three Dimensional Model of Healthy and Stented Coronary Artery Bifurcation

M.M. Zarandi[1], R. Mongrain[1], and O.F. Bertrand[2]
[1]McGill University, Montreal, QC, Canada
[2]Laval University Quebec City, QC, Canada

In this paper, a three-dimensional model of the coronary artery bifurcation is developed and physiological flow in the both healthy and stented coronary artery bifurcation is modeled using COMSOL Multiphysics. Wall shear stress induced by endovascular stents in the coronary artery ... Read More