DESIGN OF MEMS BASED HIGH SENSITIVITY AND FAST RESPONSE CAPACITIVE HUMIDITY SENSOR

Mr.R.KARTHICK, Dr.S.P.K.BABU, Ms.AR.ABIRAMI, Ms.S.KALAINILA.

Periyar Nagar, Vallam Thanjavur - 613403, Tamilnadu, India. Email: pmu@pmu.edu, pmctech@pmctech.edu Phone: +91 - 4362 - 264600, Fax: +91 - 4362 - 264660

NAAC ACCREDITED

Objectives of the research:

- 1. To model a parallel plate **capacitive humidity Sensor** structure.
- 2. To state the **theoretical background** required to tackle transient response modelling.
- To Simulate the sensor model using Comsol Multiphysics[®]
- 4. Use **Finite Element Method** to find the optimal geometrical dimensions for fast response time and high sensitivity.

Requirements of humidity sensor

- Fast **response time** and high sensitivity.
- The mean duration of a forced exhalation is about 3 sec, the typical response time of commercially available humidity sensors is about 100 ms.
- This humidity sensor is expected to exhibit a short response time, ideally **much less than 30 ms** and sensitivity in the range of nF/%RH.

Types of humidity sensor

Types / properties	Capacitive	Resistive	Displacement
RH range	o-100% possible	Only at higher RH range	Fair below 25%
Sensitivity	High even at low RH	moderate at low RH	Low at low RH
Temperature range	Up to 200°c	-40°C to 100°C	10°C to 100°C
Response time	Fast	Moderate	Moderate
Resistive to other contamination	High due to film coating	Low	Low
Accuracy	±2%	±2%	±4%
Hysteresis	Minimum	Comparatively More	More

Structure of the proposed sensor

- The sensor is a parallel plate capacitor with the sensitive layer.
- Sensitive layer is sandwiched in between the electrodes.
- The lower electrode is a full plate, the upper electrode is a grid which allows the vapour to penetrate into the sensitive layer.

Working principle:

- When water vapour blows over the surface, it is adsorbed on the surface.
- Then the adsorbed molecules diffuse in the polymer inducing a variation of its permittivity.
- The variation in permittivity causes variation in capacitance

$$C = \varepsilon_0 \varepsilon_r A/T$$

Theoretical modeling

Relative Humidity:

$$RH \% = P_a / P_s$$

 P_a - absolute vapour pressure P_s - saturation vapour pressure

By determining P_s at particular temperature, we can derive P_a for various humidity.

 P_a can be converted to concentration by using the formula $kg/m^3 = 0.02166* P_a / (t+273.16)$ derived from PV=nRT

To get in mols/m³ divide the equation by 18.02 which is the molecular weight of water vapour

Diffusion modeling:

$$\partial c/\partial t = D\partial^2 c/\partial x^2$$

Permittivity of sensing film:

$$\Delta \varepsilon_{\rm r} = \varepsilon_{\rm r(RH)} - \varepsilon_{\rm r(0)}$$

Capacitance modeling:

$$\Delta\Gamma = \Delta\epsilon_r \epsilon_0 A / th$$

Geometrical modeling

Parallel plate consist of upper electrode and a lower electrode, lower electrode in the inform of grid with a sensitive layer is in between them which act as dielectric.

- •Electrode plates width 20μm
- •Spacing between plates 20µm
- •Thickness of plates 1µm
- •Thin film thickness -
- $1.5\mu m(DVS-BCB)$

Test Structure

The resulting test structure consists of

- 1. Thin film thickness $-1.5 \mu m$
- 2. Thin film DVS BCB
- 3. Electrode plate thickness $-1 \mu m$
- 4. Response time 18 ms
- 5. Desorption time 2.4 ms
- 6. Sensitivity -0.8pf

Diffusion in 2-dimension

Capacitance Vs Humidity

Capacitance Vs Time in absorption

At 26°c with $\triangle RH$ 100%

Capacitance Vs Time in desorption

At 26°c with ΔRH 100%

Choosing the best polymer

polymers	Diffusivity µm²/s	Concentration mols	Time sec
DVS-BCB	4.5 e-6	2.4374e-15	0.003
PDMAA	8.7 e-10	1.7 340e-15	0.03
PDMAEMA	10 e-10	1.7783 e-15	0.03
PAA	3.5e-10	1.5023 e-15	0.03
PHEMA	32 e-10	1.4841 e-15	0.03
POLYVINLY ACETATE	11 e- 10	1.8103 e- 15	0.03
POLYIMIDE	2.81 e-13	2.0850 e-16	0.03

Measuring small variation in humidity $\Delta 6\%$ at 26 0 c

Optimizing for fast response time

Comparison response time

Optimizing for response time At 26° c Δ RH 3%

structure	Response Time µ secs	Desorption time in μ secs	Sensitivity nf/%RH
2/2	2.5	4	0.77
3/3	7	8	1.15
4/4	8.8	14	1.54
5/5	12	18	1.92

Optimizing for sensitivity At 26° c Δ RH 3%

Structure	Response Time µ secs	Desorption time in μ secs	Sensitivity nf/%RH
10/20	180	220	8.36
40/20	250	320	29.96
30/30	200	280	22.47

Optimizing for sensitivity and response time At 26°c ΔRH 3%

structure	Response Time μ secs	Desorption time in μ secs	Sensitivity nf/%RH
20/10	50	70	14.89
15/30	120	140	22.47
40/40	200	240	29.96

Conclusion

A Capacitive based MEMS humidity sensor is designed and tested using **Comsol Multiphysics**®

The consolidated results obtained from the design and simulation of the sensor are

- 1. 2/2 structure is suitable for fast response time
- 2. 10/20 structure for high sensitivity and
- 3. 20/10 structure for fast response time and high sensitivity.

References

- "Modelling and Optimization of a Fast Response Capacitive Humidity Sensor," IEEE - 2006
- "Accurate model of the dynamic response of a capacitive humidity sensor," IEEE - 2003
- "Computer-aided response time optimization of capacitive humidity sensors," IEEE 2004
- "Dynamic behaviour of a chemical sensor for realtime measurement of humidity variations in human breath," IEEE - 2004
- "Fast response humidity sensors for a medical Microsystems," IEEE 2003

Q & A