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Introduction

• MEMS cantilevers used in 
the sensing field:
– Chemical [1]

– Biological [2]

– Explosives [4]

• Optical transduction
– Bulky

– Cannot integrate into 
miniaturized sensors

– High power consumption
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Introduction

• Electrical transduction on MEMS cantilevers

– Piezoresistive

• Uses piezoresistors fabricated at the base

• Resistance changes due to strain variation [4]

• More noise

– Piezoelectric
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Introduction

• Electrical transduction on MEMS cantilevers

– Piezoresistive

– Piezoelectric

• AlGaN/GaN HFET embedded at base of microcantilever

• Source-drain current is significantly affected by bending [6]

• Wider bandgap
– Can operate in high temperature/harsh environments

• Higher sensitivity
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Introduction

• AlGaN/GaN 
Heterostructures:
– Large piezoelectric and 

spontaneous polarization 
properties

• Creates highly localized 2D 
electron gas (2DEG) at the 
interface [7]

• Polarization properties are 
dependent on strain [7] [8]

• Knowing the strain 
distribution at the interface 
allows accurate calculation 
of source-drain current
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Fabrication

Cantilever specifications:
• 250µm × 50µm × 2µm
• AlGaN/GaN layers grown on 

Si(111)
• AlGaN layer is 17.5nm
• Mesa height is 217nm to 

ensure complete AlGaN/GaN 
down etching.

• Metal stack (seen right) 
followed by rapid thermal 
annealing

• Through wafer Si etch 
performed using “Bosch” 
process
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Simulation

• Shown at right is the 
model used.

• A 35µm × 35µm mesa is 
situated at the base.

• Source, gate, and drain 
metal stacks are placed 
on top of mesa.

• All metal stack layers are 
modeled to ensure 
accurate strain 
distribution output
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Simulation

• The model used has very thin 
layers on a large structure

• Very large aspect ratio in metal 
stack creates meshing 
problems

• Mapped/swept meshing  is 
used over all metal stacks
– Manual meshing: 4 min per 

static simulation
– Auto-mesh: runs out of 

memory

• All simulations use the default 
Lagrange-Quadratic type 
elements.
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Simulation - Static

• Static simulations were run to 
examine strains about the mesa

• Effects of metal stacks examined
• Strain distributions can later be 

used to find a strain/current 
relationship.

• 2DEG formation depends on both 
x and y-strains as described by 
piezoelectric polarization
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Simulation - Static

• Piezoelectric polarization:[8]

Comsol Conference, Boston 
October 7-9, 2010

 yxzPE eeP   3133

εx ,εy ,εz = x, y, and z-direction strains

e33, e31 = piezoelectric constants for AlxGa1-xN



Simulation - Static

• E = Young’s Modulus
• w = width
• t = thickness
• L = length
• F = force
• x = length of strain 

measurement
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Constraints and force conditions applied to the model



Simulation - Static

• All static simulations use a 0.1 
nN distributed force on the free 
end.

• Displacement: 66.32 pm

• Spring Constant:

– Simulated: 1.5 N/m

– Theoretical: 1.34 N/m

• Extra layers added (Contacts, 
mesa geometry) will reduce 
strains at the HFET location.

• y-direction strains were found to 
be an order less than x-strains

– y-strains can be safely ignored
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Simulation - Static

• Mapped strains at AlGaN/GaN interface on mesa
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Simulation - Static

• Another important factor 
is x-strain along the 
vertical direction.
– Major strains are in the 

x-direction
– Bending occurs in the 

z-direction

• Strain varies depending in 
vertical location

• These strain variations 
create a polarization 
profile that will not change 
abruptly at the interface.
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Simulation - Harmonic

• Frequency sweeps were 
performed using COMSOL 
simulations and compared 
to experimental results.

• The Rayleigh damping 
parameter was used to 
simulate quality factor (Q)
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Simulation - Harmonic

• Harmonic analysis yields 
a quality factor of 50.5
– lower than experimental 

value (80)

• The observed frequency 
shift may be due to 
over-etch of the 
microcantilevers during 
fabrication.
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Simulation - Electrostatic

• Transient analysis were 
performed to observe 
the deflection given an 
AC input.

• Because of solve 
time/hardware 
constraints, a much 
simpler model is used.
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Simulation - Electrostatic

• Oscillation depends on[9]:
– Quality factor (Q)

– AC voltage (Vac)

– SWF difference (Δφ)

– Spring constant (k)

– Bias separation (z)

– Bias area (A)

– relative permittivity of 
separating medium (ε)
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Simulation - Electrostatic

• Theoretical calculation 
was done using ode45 
in MATLAB

• Simulations run in 
COMSOL 3.5a solved 
for a DC voltage for 
each time step.
– These discrete time 

steps do not 
incorporate Q
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Simulation - Electrostatic

• To handle the discrete 
solving problem we 
considered Q=1 when 
running our theoretical 
calculations.

• Theoretical model considers 
two constantly parallel 
plates

• The slight discrepancy 
observed demonstrates 
COMSOL’s ability to handle 
fringing effects and non-
uniformity of plate 
separation.
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Conclusion
• COMSOL simulations can help us 

investigate electromechanical 
parameters of our cantilever sensor.

• The static simulations help us 
predict strains and the spring 
constant with greater accuracy than 
standard theory.

• Simulating the harmonic response 
we were able to closely match 
resonant frequency and quality 
factor.

• COMSOL helps us run more realistic 
analysis when observing 
electrostatic properties.  We are 
able to account for fringing field 
effects and non-uniformity; 
something standard PDEs cannot 
perform.

Comsol Conference, Boston 
October 7-9, 2010

AlGaN/GaN cantilever bent due to residual stress



Future Work
• Investigate effect of vertical 

strain variations near the 
2DEG interface.

• Strain to current relationship 
simulated and observed 
experimentally.

• Account for prestress due to 
thermal mismatch between 
layers in simulations.

• Improve electrostatic model to 
account for quality factor 
enhancement at resonant 
frequency.

• Alter electrostatic model to no 
longer solve each time step 
discreetly.
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