

#### COMSOL CONFERENCE 2018 BOSTON

#### NAVAL Postgraduate School

# COMSOL Multiphysics® Simulation of TEGs for Waste Thermal Energy Harvesting

L. Howard<sup>1</sup> D. Tafone<sup>2</sup> D. Grbovic<sup>1</sup> A. Pollman<sup>1</sup>

1. Naval Postgraduate School

2. Ramapo College of New Jersey





## Agenda

2

- Purpose
- Thermoelectric Generator
- Research Approach
- COMSOL Modules
- System Components
- TEG Module Comparison
- Simulation
- Results
- Future Work
- Conclusion



- The Department of Defense is looking at several energy initiatives to reduce the reliance on fossil fuels and increased efficiency within the branches of the military.
- Considering the amount of energy wasted to heat in combustion engines, combat, and communications systems, it is natural to attempt to re-capture some of this energy and put it to beneficial use to increase operational efficiency.
- Ultimately, this research will help determine if waste heat recovery with thermoelectric generators (TEG) from a generator or an engine is feasible, and to what degree.



### **Thermoelectric Generation**

**Seebeck Effect Positive Charge Carrier** Creates voltage when •  $\oplus$ (hole) exposed to a temperature differential **Negative Charge Carrier**  $\odot$ (electron) HOT SIDE  $\bigoplus$ ( - ) N P COLD SIDE

WWW.NPS.EDU



- Develop a model in COMSOL to simulate a potential prototype system of a TEG array on the muffler of a portable generator to predict the potential temperature difference between TEG sidings.
  - COMSOL Modules
  - Geometry
  - Boundary Conditions
  - Simulation



- <u>Heat Transfer Module</u>
  - Heat Transfer in Fluids : Shows how heat spreads through system components
  - Laminar Flow: Simulates the movement of fluid
  - Nonisothermal Flow: combined Laminar Flow and Heat Transfer in Fluids
    - Simulated varying temperatures
  - AC/DC and Heat Transfer Module
    - Electric Currents interface and Heat Transfer in Solid interface
      - Simulated the thermoelectric effect



## Muffler

#### **Overview**

- Muffler of a commercial gasoline powered generator
  - Carbon steel
  - Interior assumed to be hollow



#### **Boundary Conditions**

- FLIR camera: inflow temperature and average surface temperature
  - 10 minutes steady state operation
    - Inflow temp: 406°C
      - -Heat Transfer of Fluids interface
    - Avg. surface temp: 258°C

       -Lamar Flow interface adjusted until the muffler matched 258°C. Resulted in an inlet flow of

 $0.0117 \frac{m^3}{s}$ .







## Water Block

#### **Overview**

- Two nozzles constructed to simulate a water cooling system
- Thin aluminum walls designed to force the water to spread evenly throughout the block

#### **Boundary Conditions**

- To simulate a cooling system chiller:
  - Heat Transfer in Fluids interface
    - Water temperature: 19°C
    - Pressure: 60 Psi
  - Laminar Flow interface
    - Inlet flow rate:  $0.00014 \frac{m^3}{s}$







#### **Overview**

- Commercial TEG
  - *Bi*<sub>2</sub>*Te*<sub>3</sub>
  - Aluminum
  - Silicone based adhesive



#### **Complex Design**



#### **Complex Design**

- 22 rows of  $Bi_2Te_3$  pellets with 11 pairs in each
- Aluminum plates surround pellets
- Hollow boxes of silicone



#### **Simplified Design**

- Same external dimensions as complex
- Same volume of  $Bi_2Te_3$ , aluminum, and silicone that was inserted into 2 blocks





- Each TEG design placed in block of air at ambient temperature
  - One side of the TEG heated from 100-180 °C at 20° C increments
  - Opposite side of TEG temperature measured

| Temperature Input<br>(°C) | Complex TEG<br>Temperature (°C) | Simplified TEG<br>Temperature (°C) |  |  |
|---------------------------|---------------------------------|------------------------------------|--|--|
| 100                       | 373.04                          | 373.04                             |  |  |
| 120                       | 393.00                          | 393.01                             |  |  |
| 140                       | 412.97                          | 412.97                             |  |  |
| 160                       | 432.93                          | 432.92                             |  |  |
| 180                       | 452.88                          | 452.88                             |  |  |

- Key Takeaways:
  - Same thermal conduction between designs
  - Simplified design computation was 9 times faster at 3 seconds per simulation
  - Simplified TEG design used in overall system design





• Fist Simulation: Aluminum top sheet 5 mm wide:

| TEG    | Hot Side Temp (°C) | Cold Side Temp (°C) | Temp Difference (°C) |
|--------|--------------------|---------------------|----------------------|
|        |                    |                     |                      |
| 1      | 89.26              | 37.47               | 51.79                |
| 2      | 70.68              | 34.26               | 36.42                |
| 3      | 71.01              | 34.27               | 36.74                |
| 4      | 77.27              | 34.94               | 42.33                |
| 5      | 58.50              | 31.06               | 27.44                |
| 6      | 62.3               | 31.35               | 30.95                |
| 7      | 67.82              | 33.58               | 34.24                |
| 8      | 60.24              | 30.99               | 29.25                |
| Averag | e Temp Difference  |                     | 36.15                |



Surface: Temperature (degC)

• Second Simulation: Aluminum top sheet 3 mm wide:

| TEG    | Hot Side Temp (°C) | Cold Side Temp (°C) | Temp Difference (°C) |
|--------|--------------------|---------------------|----------------------|
|        |                    |                     |                      |
| 1      | 91.00              | 39.51               | 51.48                |
| 2      | 72.74              | 36.18               | 36.56                |
| 3      | 72.87              | 35.83               | 37.04                |
| 4      | 79.61              | 36.93               | 42.68                |
| 5      | 61.52              | 33.09               | 28.43                |
| 6      | 66.30              | 33.45               | 32.84                |
| 7      | 74.65              | 36.32               | 38.37                |
| 8      | 66.29              | 33.53               | 32.76                |
| Averag | e Temp Difference  |                     | 37.52                |



WWW.NPS.EDU



# Future work in the research will include the following:

- Compare COMSOL model output to tabletop prototype
- Apply temperature differences determined in COMSOL to predict voltage and output power of TEG array
- Determine most efficient TEG array arrangement in series, parallel, or combination
- Investigating IR signature reduction aspects



- COMSOL verified physical characteristics of TEG, water block, and muffler
- Two simulations conducted to determine hot and cold side temperature for each TEG
  - 5.0 mm plate: 36.15 °C
  - 3.0 mm plate: 37.52 °C
- Findings will be utilized in further modeling, design, and construction of TEG array prototype



### Acknowledgements



NPS Systems Engineering Department Advisors:

Dr. Anthony Pollman (USMC, Ret.) Dr. Dragoslav Grbovic



Office of Naval Research Neptune II





## Questions?

WWW.NPS.EDU