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Abstract: In this paper we present a model
to describe the process of waste water filtra-
tion based on hollow-fibre membrane filters.
In particular, we deal with membranes whose
pores diameter is in the range 0.01 – 0.1 µm,
i.e. we consider the so-called ultrafiltration
process. The main problem in these filtering
systems is the membrane fouling : some of the
particles to be filtered attaches on the mem-
brane outer surface, soiling the medium and
reducing the filtration efficiency.
The mathematical model consists in two equa-
tions for the Darcy’s flow through the filter,
coupled with an advection-diffusion-reaction
equation and an evolution equation.
We solved the model by COMSOL, exploit-
ing the Earth Science module and the Diffu-
sion mode. The preliminary result of simula-
tions shows that the qualitative behaviour of
the solution is coherent with the experimental
evidence.
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1 Introduction

The application of polymeric membranes to fil-
ter waste waters is a technique widely used by
industry and municipal companies devoted to
the control of the water quality. In particular,
the filtration based on membranes is compet-
itive due to the low cost of the materials and
the management of the plants, compared to
other filtration methods.
In our context, we deal with a filtration mod-
ule consisting in a pressure vessel housing a
number of bundles U-shaped ; in turn, each
bundle consists of a series of hollow fibre mem-
branes, whose pores diameter is in the range
0.01 – 0.1 µm, which means that we are consid-
ering the so-called ultrafiltration process. The
water to be filtered occupies the void space
outside the fibres. A pressure gradient is ap-
plied between the interior part of the fibre
and the outer one, so that the water flows

through the membrane and the pollutant par-
ticles larger than the pore diameter are cut
off outside the membrane. The clean water
(the so–called permeate) is then collected and
it flows away by the outlet.
The main problem in these filtering systems
is the membrane fouling. As a the matter of
fact, a part of the filtered particles can attach
on the outer surface of the membrane, forming
a thin layer (the so–called cake) which even-
tually soils the medium and reduces the fil-
tration efficiency. To remove such a material,
periodically a back wash process is imposed to
the system, inverting the flux and let the clean
water flow through the membrane.
In Fig.1 we show a picture of the filtering mod-
ule we are considering, while in Fig 2 a mag-
nified picture of a single fibre is reported. The
filtration takes place in a dead-end configura-
tion, i.e. the polluted water (feed) entering the
module can flow away just going through the
membranes. The feed goes into the module
from an edge and flows in the space outside
the fibres: in other words we are dealing with
the so–called outside/in filtration. The per-
meate flows away by the outlet placed at the
opposite edge of the inlet.
A single cycle of production takes almost one
hour; afterwards a backwash cycle (almost 60
sec.) is imposed, along with an air scouring in
order to make easier the removal of the cake
from the membrane.
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Figure 1: An example of hollow-fibre module
(Courtesy of Polymem - Toulouse, France)

Figure 2: A magnified picture of a single
hollow-fibre.

2 Model definition

In order to describe the process, we consider
the module as a double porosity and double
permeability porous medium. We define two
regions:
(A) the lumina region, consisting in the vol-
ume occupied by the inner part of the fibres.
(B) the shell region, consisting in the space
outside the fibres.
Therefore, the total membrane area is the in-
terface between these regions, which are linked
each other by a source/sink term representing
the water flux through the membrane. A sim-
ilar approach can be found in [1].
In the sequel we will use the following nota-
tion: subscript ( · )s is referred to the shell
region, while ( · )l is referred to the lumina
region.
Exploiting the axial symmetry of the module,
we study the problem in a 2D domain using
cylindrical coordinates. In particular, refer-
ring to Fig. 3 we denote by x the longitudinal

coordinate pointing upward and by r the ra-
dial coordinate. Moreover, L is the length of
the module and R its radius. In our model
we neglect the effect of gravity, therefore the
choice of the orientation of the coordinate x
does not affect the model solution.

Figure 3: Domain of the problem for the
hollow-fiber module

In such a domain, we write the mass conser-
vation equation in each medium, i.e.

∇ · qs = −Γ, (1)
∇ · ql = Γ, (2)

where we have assumed a constant fluid
density, ρ, and q is the specific discharge
(or superficial velocity). Moreover Γ is the
source/sink term, which will be defined later.

Concerning the characterization of the porous
media, we assume the following:

• Since we are dealing with a tertiary wa-
ter treatment, we stipulate that the foul-
ing affects the filtration efficiency but it
does not change the porosity and the
permeability of the shell region. There-
fore, in each medium we consider a con-
stant porosity and permeability.

• In the lumina region, we have only the
longitudinal permeability. Indeed, the
inner parts of the fibres are not con-
nected with one another. Therefore, we
define kl as the permeability of the lu-
mina region (along the x coordinate).



• Conversely, in the shell region we intro-
duce a permeability tensor

K =
(
ks,r 0
0 ks,x

)
.

with ks,x and ks,r permeability along
longitudinal and radial coordinate, re-
spectively.

Shell and lumina porosity are defined in the
usual way, i.e.

εs = 1−N
(ro
R

)2

, (3)

εl = N
(ri
R

)2

, (4)

where N is the number of fibres and ri, ro are
the inner and outer fibre radius, respectively.
Concerning kl we use the well-known for-
mula derived for media of capillary tubes and
based on Hagen-Poiseuille flows (see [2], for
instance),

kl =
Nr4i
8R2

(5)

For what concerns the shell, we use the formu-
las defined by Happel (see [3]), i.e.

ks,x =
r2o
4ϕ

(
− logϕ− 3

2
+ 2ϕ− 1

2
ϕ2

)
,(6)

ks,r =
r2o
4ϕ

(
− logϕ+

ϕ2 − 1
ϕ2 + 1

)
, (7)

where ϕ = 1− εs.

2.0.1 Darcy’s flow

Using the parameters selected for the problem
solution, we evaluate the Reynolds number of
filtration and backwash process. During fil-
tration the leading flow is the one in the shell,
while the main flow during backwashing takes
place in the lumina. Moreover, as usual in
dealing with porous media, as characteristic
length we consider the square root of the per-
meability. According to this argument, we get,

Refiltration ≈ 1.53

and
Rebackwash ≈ 0.16

Therefore, in both cycles we are allowed to
consider a Darcy’s flow and thus we define

qs = −
(
ks,x

µ

∂Ps

∂x
ex +

ks,r

µ

∂Ps

∂r
er

)
(8)

ql = −kl

µ

∂Pl

∂x
. (9)

where Ps and Pl are the pressure in the shell
and in the lumina region, respectively.

As we said, the term Γ represents the rate of
water loss per unit volume. Therefore it is
linked to the averaged Darcy’s velocity within
the membrane, so that it is proportional to the
pressure difference (Ps − Pl).
We define,

Γ =
Av

µ (Rm +Rc)
(Ps − Pl) (10)

where:

• Av is the ratio between filtering area and
filtering volume (specific filtering area),
[Av] = L−1,

Av =
2roN

R2 −Nr2o
.

• Rm is the membrane resistance, [Rm] =
L−1, which is linked to the membrane
permeability.

• Rc is the cake resistance, [Rc] = L−1,
namely the additional resistance due to
the presence of the cake onto the mem-
brane surface. The definition of Rc will
be specified later on.

Exploiting (8), (9) and (10), the mass balance
(1)-(2) rewrites as

ks,x

µ

∂2Ps

∂x2
+

ks,r

µ

1
r

∂

∂r

(
r
∂Ps

∂r

)
=

=
Av(Ps − Pl)
µ (Rm +Rc)

(11)

kl

µ

∂2Pl

∂x2
= − Av(Ps − Pl)

µ (Rm +Rc)
(12)

In next section we define the equations for the
pollutant concentration which will be coupled
with the previous system.

2.0.2 Modelling the fouling process

We denote by c the pollutant concentration
in the volume of water, [c] = ML−3, assuming
the presence of only one species. Since the pol-
lutant is completely cut off by the membranes,
it is transported only by the water in the shell
region.
Then we denote by cm the concentration of



the cake, namely the mass of the cake per unit
volume of the shell region, [cm] = ML−3. The
growth rate of cm is proportional to Γ, since
the attachment process is driven by the fil-
tration flux. Accordingly, it represents a sink
term for the transport equation of c. Finally,
we define the following system

∂

∂t
(εsc) +∇ · (cqs) = ∇ · (εsD∇c)

−αΓ (εsc) , (13)
∂cm
∂t

= α Γ (εsc) , (14)

where D is the hydrodynamic dispersion coef-
ficient and α is the attachment coefficient.
The resistance due to the cake is function of
cm. We model such a dependence by the fol-
lowing relationship

Rc(x, r, t) = γcr0cm(x, r, t) (15)

where γc is a constant parameter.

2.0.3 The complete system

Summarizing, the process is described by the
following system

ks,x
∂2Ps

∂x2
+ ks,r

1
r

∂

∂r

(
r
∂Ps

∂r

)
=

Av(Ps − Pl)
(Rm +Rc)

, (16)

kl
∂2Pl

∂2x
= −Av(Ps − Pl)

(Rm +Rc)
, (17)

∂

∂t
(εsc) +∇ · (cqs) = ∇ · (εsD∇c)

−α
[
Av

µ

(Ps − Pl)
Rm +Rc

]
(εsc), (18)

∂cm
∂t

= α

[
Av

µ

(Ps − Pl)
Rm +Rc

]
(εsc), (19)

Rc(x, r, t) = γcr0cm(x, r, t). (20)

2.0.4 Boundary conditions

The module houses completely the bundle, so
that there is no flux into or from the mod-
ule unless at inlet and outlet: thus the inlet
flux (feed) equals the outlet flux (permeate).
Moreover, we assume a constant value for the
concentration of pollutant entering the mod-
ule, say cin. Therefore, denoting the feed flux

by Jf , [Jf ] = LT−1, we set the boundary con-
ditions as follows:

• On the inlet boundary:

qs · n = Jf .

ql · n = 0.
c = cin.

• On the outlet boundary:

qs · n = 0.
ql · n = −Jf .

No flux condition for c.

• Elsewhere: no flux condition for both
the hydrodynamic and the transport–
reaction problem.

2.1 Back wash

During the back wash step, we have a counter-
flux, say Jback, entering the lumen region at
the outlet. Moreover, an air flux is added in
the shell to aid the cake removal. Therefore,
the model is similar to the previous step with
the exception of the evolution equation for cm,
which acquires the following form:

∂cm,back

∂t
= −α

[
Av

µ

(Ps − Pl)
Rm +Rc

]
cm,back

− βJbackcm,back. (21)

where βJbackcm,back is the term accounting for
the air scouring, with β parameter to be cali-
brated via experiments, [β] = L−1, and

Rc = Rc (cm,back) .

The initial condition for equation (21) is the
value of cm at the end of the previous step.
The boundary conditions for the PDEs are:

• On the outlet boundary:

qs · n = 0.
ql · n = Jback.

No flux condition for c.

• On the inlet boundary:

qs · n = −Jback.

ql · n = 0.
Vanishing dispersive flux for c (i.e.
only advective flux).

• Elsewhere: no flux condition for both
the hydrodynamic and the transport
problem.



2.2 Characteristic time scales

Since in this problem several phenomena take
place, it is useful to consider the different time
scales involved and evaluate them using the se-
lected parameters, namely

• Time of advection along the radial coor-
dinate r,

tadv,r =
(
εsµR

2

P ∗ks,r

)
∼ O(10−4)sec.

• Time of advection along the longitudinal
coordinate x,

tadv,x =
(
εsµL

2

P ∗ks,x

)
∼ O(10−1)sec.

• Time of diffusion along the radial coor-
dinate r,

tdiff,r =
(
R2

D

)
∼ O(102)sec.

• Time of diffusion along the longitudinal
coordinate x,

tdiff,x =
(
L2

D

)
∼ O(105)sec.

• Characteristic time for the filtration pro-
cess (without cake influence),

tfilt =
(
µRm

AvP ∗

)
∼ O(1)sec.

• Characteristic time of the attachment,

tattach =
1
α
tfilt ∼

1
α
O(1)sec.

where P ∗ is a characteristic pressure (e.g. we
set P ∗ = 1 bar). Therefore, setting as char-
acteristic time of the problem the duration of
filtration,

Tfilt ∼ O(103),

we note that

(A) Tfilt � tdiff,x, so that diffusion along x
is negligible.

(B) Conversely, the advection is the leading
phenomenon.

The order of magnitude of the attachment co-
efficient α has to be set according to the exper-
imental evidence, by evaluating the ratio be-
tween attachment process and advection. For
instance, if during the experiments a variable
thickness of the cake is noticed along the mod-
ule, then it means that attachment is compa-
rable with advection and for sure we have to
set α ≤ 1.

3 Use of COMSOL Multiphysics

To approach the problem with COMSOL, we
solved separately the two stages of the pro-
cess (i.e the filtration and the back wash step,
respectively). Exploiting the axial symmetry,
we define a 2D geometry and for each stage we
applied the following modes:

• The Darcy’s law - Pressure for a satu-
rated medium (Earth Science Module),
to solve equations (16)-(17).

• The Solute Transport mode (Earth Sci-
ence Module) for equation (18).

• The Diffusion mode for equation (19).

In particular, we notice that the Diffusion
mode was applied with a vanishing diffusion
coefficient: even if this approach seems far to
the mathematical character of equation (19)
— in fact the unknown cm does not depend
directly on the spatial coordinates (r, x) – it
allows to couple this equation with the system
of PDEs (16)-(18) better than considering it
properly as an evolution equation.
The term Γ is the one coupling each equation
with another in a nonlinear way, accordingly
to definitions (10) and (15). Therefore, this
term was defined as Global Expression.
Finally, we remark that (16)-(17) are station-
ary equations. Nevertheless, after preliminary
tests we decided to analyze them in a transient
mode with a zero storage term (see [4] for more
details): this factitious numerical approach
ensures a better coupling between the hydro-
dynamic problem and the transport–reaction
one, which were solved all together using the
time dependent segregated solver.
After the filtration stage, the solution was
stored and used as initial condition for the
backwas step, which was solved in a similar
way.



4 Results of preliminary
simulations

In this section we report the results obtained
for a simulation considering only a cycle of fil-
tration and back wash step. In particular, we
note that as TMP (transmembrane pressure)
we report the difference between the pressure
at inlet and outlet; such an approach follows
the specifications given by the companies pro-
ducing filters.
Moreover, in the simulation we selected α = 1,
recalling that this choice has to be carefully
taken after an experimental validation of the
model. The same argument applies to the air
scouring process, for which we have selected
β = 1.
Hereafter we report the simulation time (in
sec.) for each cycle:

Filtration Back wash
147.112 sec. 175.258 sec.

In Fig. 4-9 we report the surface plot of the
cake resistance Rc during the two stages: ac-
cordingly to what defined in the model, the
resistance increases during filtration and de-
creases due to the back wash, even if the ini-
tial state is never reached. In Fig. 10-11 we
report the TMP according to the definition
given above. In all figures the time is scaled to
Tfilt = 1 h. for filtration and Tback = 30 sec.
for backwash
These results show that the model definition is
in accordance with the experimental evidence.
As future work we envisage an iterative ap-
plication of filtration/backwashing cycles, in
order to simulate the process taking place in
real industrial plants.

Figure 4: Cake resistance during production at
the initial time (zoom close to the inlet).

Figure 5: Cake resistance during production at
times t = 0.3. (The time is dimensionless).

Figure 6: Cake resistance during production at
times t = 1. (The time is dimensionless).

Figure 7: Cake resistance during back wash at
times t = 0.1. (The time is dimensionless).

Figure 8: Cake resistance during back wash at
times t = 0.4. (The time is dimensionless).

Figure 9: Cake resistance during back wash at
final time t = 1. (The time is dimensionless).



Figure 10: TMP during filtration.

Figure 11: TMP during back wash.
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