

MultiPhysics Simulation of Direct Double Helix Magnets for Charged Particle Applications

Dr. Philippe J. Masson

Advanced Magnet Lab pmasson@magnetlab.com

Boston, MA – October 9th, 2009

Outline

- Double Helix Windings
- Direct Double Helix
- Geometry in COMSOL
- Current distribution
- "Perfect" field
- Thermal analysis
- Application example
- Conclusion

How Double-Helix™ Works

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

AML - PJM - 10/09/2009

Double Helix Winding in Equations

$$X(\theta) = a\cos(\theta)$$

$$Y(\theta) = a\sin(\theta)$$

$$Z(\theta) = \frac{h}{2\pi}\theta + \frac{a}{\tan(\alpha)}\sin(n\theta + \varphi)$$

AML Direct Double-Helix™ Technology

- *Direct* Double-Helix[™] (DDH)
 - Enables coil, conductor and winding to be created "directly"....
 ...and in one automated process
 - Variable cross section of the conducting path drives the resistance down
 - Layer surface directly exposed to coolant provides very effective cooling

Variation in conductor width as a function of azimuth angle for a single turn of a DDH coil

• 2D "unrolled"

- Create vector of X, Y coordinates
- Use "geomspline" to create curve
- Use "geomcoerce" to build solid object

• 3D

- Create vector of X, Y and Z coordinates
- Use "simplesweep3" to create tool path
- Subtract to cylinder to build solid object

Mesh

~ 5,500 elements and 12,500 degrees of freedom

Current Density Distribution

- Non-uniform current density:
- \Rightarrow Lower current density in wider areas
- \Rightarrow Lower Joule heating
- \Rightarrow Higher current allowed
- \Rightarrow Higher field

• Magnet resistance is reduced

Min: 1.124e

Effect on Magnet Resistance

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates 10

Due to conductor cross-section variation, DDH resistance is lower than that of DH for the same magnet design.

AML - PJM - 10/09/2009

Sinusoidal Current Density Distribution

- Axial component of current density exhibits sinusoidal distribution
- Radial component of two layers compensate for axial field

 Ideal current source for low harmonics field distribution

"Perfect" Field

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates 12

AML - PJM - 10/09/2009

Conventional vs. Direct Double-Helix™

Large distortions, high harmonics content

Some harmonics due to non-sinusoidal current distribution

- Sinusoidal Field Distribution
- No Space Harmonics
- Multipole Coil with one continuous winding

• Double-Helix[™] windings are able to generate a perfectly sinusoidal field distribution

Thermal Analysis

- Resistive heating from current density
- Water cooling on top surface

Resistive heating distribution

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates 15

good heat transfer on top surface

Heat Flux

Heat transfer from the narrow sections to the wider sections

No insulation required Improved heat transfer

Large cooling surface

Heat flux in one turn of a quadrupole

- Wider sections act as heat sinks
- Heat transfers from narrow sections to wider sections

Application Example

• Magnetic optics for charged particle applications

- Dipole steering magnets
- Quadrupole focusing magnets

I _{nom} (A)	P (W)	Jc Peak (A/mm ²)	T _{Inlet} (C)	T _{Peak} (C)	Field (Gauss)
5.5	73	39	35	39.6	83
7.0	120	49	35	42.7	105
8.5	181	60	35	46.3	128
10	251	70	35	51	150
11	309	78	35	55	165
13	369	92	10	44	195

I _{nom} (A)	P (W)	Jc Peak (A/mm ²)	T _{Inlet} (C)	T _{Peak} (C)	Field (Gauss)
20	174	38	35	41.1	308
25.0	268	48	35	44.4	385
30	387	58	35	47.8	463
35	515	67	35	52.2	540
40	692	77	35	57.5	617
45	792	86	35	57	694
55	578	106	10	62.5	848
60.0	714	115	10	77.8	925

Operational parameters of vertical steering dipole

Operational parameters of horizontal steering dipole

Conclusion

- DDH technology enables more compact magnets to be built with "perfect" field distribution
- DDH intrinsically exhibits lower resistance and allows for very good heat removal
- Unprecedented current densities have been achieved
- COMSOL MultiPhysics allows for better understanding of the physics of DDH magnets and drives further improvements

