Full-Wave Simulation of an Optofluidic Transmission-Mode Biosensor

Edward P. Furlani¹, R. Biswas² and M. Litchinitser²

¹The Institute for Lasers, Photonics and Biophotonics, ²Department of Electrical Engineering, University at Buffalo

Comsol Conference 2009

Outline

- Transverse Waveguide-based Biosensors
- Novel Optofluidic Biosensor
- Antiresonant Reflecting Optical Waveguides
- Device Simulation
- Conclusions

Transverse – Waveguide Based Biosensors

Whispering Gallery Mode Sensor

F. Vollmer et al. App. Phys. Lett. 80, 4057 -4059 (2002).

(a) (b)

Disadvantages:

•Difficult multiplexing for array applications

•Sensitive alignment coupling - awkward for POS applications

1590

Optofluidic Biosensor

Antiresonant Reflecting Optical Waveguide (ARROW) Model

Antiresonant Reflecting Optical Waveguide (ARROW) model

The high-index layer on either side of the low-index core behaves as a Fabry-Perot resonator in the ARROW model.

A standing wave builds up in the high-index layer when $k_{ex}d = \pi m$, m = 1, 2, ..., where k_{ex} is the propagation constant. This corresponds to a resonant condition in the high-index layer so that <u>light leaks out of the core</u>, thus giving rise to the <u>transmission</u> <u>minima</u>.

The <u>transmission maxima</u> result from <u>antiresonant wavelengths</u> that experience destructive interference within the high-index layer so that light is confined in the low-index core.

A. K. Abeeluck 2002 / Vol. 10 23 Optics Express 2002

Microstructured Optical Fibers

A. K. Abeeluck 2002 / Vol. 10 23 Optics Express 2002

Microstructured Optical Fiber (MOF) (Photonic Crystal Fibers)

P. J. Russel, Light Wave Tech. 2006

Analysis of Transmission Spectrum

Antiresonant Reflecting Optical Waveguide (ARROW) model

A. K. Abeeluck 2002 / Vol. 10 23 Optics Express 2002

Time-Harmonic Analysis Computational Domain

$$\nabla \times \left(\mu_r^{-1} \nabla \times \boldsymbol{E}\right) - \left(\varepsilon_r - \frac{j\sigma}{\omega \varepsilon_0}\right) k^2 \boldsymbol{E} = 0$$

Transmission Spectra vs. Substrate Thickness (h)

Transmission vs. Number of Layers

Two Layers

Time-Harmonic Full-Wave Analysis Device Design

Reduced Computational Domain Mesh: 48,306 cubic elements Parametric Analysis: It takes approximately 15 min to compute a transmission spectrum using a dual quad-core workstation (Windows XP 64 bit) with 24 GB of RAM

Analysis of Transmission Spectrum

Comparison with Analytical Analysis

λ (nm)

Transmission Spectra vs. Refractive Index of Sensing Layer n_s

Shift in λ_2 Transmission Minima vs. Refractive Index of Sensing Layer n_s

Transmission vs. Channel Width

Detection Sensitivity (Spectral Shift vs. Biolayer Thickness w_s)

Nanoparticle-Based Immunoassay

Sensitivity – Spectral Shift vs. Biolayer Thickness w_s

Transmission Minima

$$\lambda_m = \frac{2n_1 d}{m} \left[\left(\frac{n_2}{n_1} \right)^2 - 1 \right]^{\frac{1}{2}} \quad (m = 1, 2, ...)$$

$$\Delta\lambda_m = \frac{2n_1\Delta d}{m} \left[\left(\frac{n_2}{n_1}\right)^2 - 1 \right]^{\frac{1}{2}} \quad (m = 1, 2, \dots)$$
$$\Delta\lambda_2 = n_1\Delta d \left[\left(\frac{n_2}{n_1}\right)^2 - 1 \right]^{\frac{1}{2}} \quad (m = 2)$$

$$\Delta \lambda_2 = 2n_1 w_s \left[\left(\frac{n_2}{n_1} \right)^2 - 1 \right]^{\frac{1}{2}} \quad (m = 2)$$

 $\Delta d = 2 w_s$

Sensitivity – Spectral Shift vs. Biolayer Thickness w_s

$$\Delta \lambda_2 = 2n_1 w_s \left[\left(\frac{n_2}{n_1} \right)^2 - 1 \right]^{\frac{1}{2}} \quad (m = 2)$$

 $\Delta d = 2 w_s$

Conclusions

- Introduction of a novel Optofluidic Transmission- Mode Biosensor.
- Biosensing based on contrast in refractive index between target biomaterial and carrier fluid.
- The presence of target biomaterial causes a detectable shift in transmission spectrum of sensor.
- Transmission mode operation facilitates array sensing with potential for multiple target antigens detected on a single chip.
- Device design and optimization can be completed in a few days using Comsol RF solver,
- Sensor architecture holds potential for low cost POS clinical diagnostic applications.