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Transverse – Waveguide Based Biosensors

Disadvantages:

•Difficult multiplexing for 
array applications 

•Sensitive alignment 
coupling  - awkward for POS 
applications

Advantages:

High Sensitivity

Whispering Gallery Mode Sensor

Photonic Crystal Resonator

Microring 
Resonator



Optofluidic Biosensor
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Antiresonant Reflecting Optical Waveguide 
(ARROW) Model

Antiresonant Reflecting Optical Waveguide (ARROW) model

The high-index layer on either side of the low-index core behaves as a Fabry-Perot 
resonator in the ARROW model.

A standing wave builds up in the high-index layer when kexd = πm, m = 1, 2,…, where 
kex is the propagation constant. This corresponds to a resonant condition in the high-
index layer so that light leaks out of the core, thus giving rise to the transmission 
minima. 

The transmission maxima result from antiresonant wavelengths that experience 
destructive interference within the high-index layer so that light is confined in the 
low-index core. 
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Microstructured Optical Fibers
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Microstructured Optical Fiber (MOF)
(Photonic Crystal Fibers)

P. J. Russel, Light Wave Tech.  2006
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Analysis of Transmission Spectrum
Antiresonant Reflecting Optical Waveguide (ARROW) model
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Time-Harmonic Analysis
Computational Domain

Scattering BC
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Dual Processor (3 GHz)
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Windows XP 64 Bit
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Transmission Spectra vs. 
Substrate Thickness (h)



Transmission vs. Number of Layers
Two LayersFour Layers



Time-Harmonic Full-Wave Analysis
Device Design

Parametric Analysis: It takes approximately 
15 min to compute a transmission spectrum 
using a dual quad-core workstation (Windows 
XP 64 bit) with 24 GB of RAM 

Reduced Computational Domain
Mesh: 48,306 cubic elements
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Analysis of Transmission Spectrum

λ = 560 nm λ = 720 nm
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Comparison with Analytical Analysis

λ1,min = 1155 nm
1

2 22 1     ( 1,2, )highlow
m

low

nn d m
m n

λ
  

= − =  
   



Minima

d = 1 µm
n1 = 1.33 (H2O)
n2 = 1.45  (SiO2)

λ2,min = 578 nm
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λ0,max = 2310 nmλ1,max = 770 nm
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Transmission Spectra vs. ns.

Transmission Spectra vs. 
Refractive Index of Sensing Layer ns



Shift in λ2 Transmission Minima  vs. 
Refractive Index of Sensing Layer ns



Transmission vs. Channel Width
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Detection Sensitivity 
(Spectral Shift vs. Biolayer Thickness ws)

Nanoparticle-Based Immunoassay
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Sensitivity – Spectral Shift vs. Biolayer Thickness ws
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Sensitivity – Spectral Shift vs. Biolayer Thickness ws
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Conclusions

• Introduction of a novel Optofluidic Transmission- Mode 
Biosensor.

• Biosensing based on contrast in refractive index between 
target biomaterial and carrier fluid. 

• The presence of target biomaterial causes a detectable shift in 
transmission spectrum of sensor.

• Transmission mode operation facilitates array sensing with 
potential for multiple target antigens detected on a single chip. 

• Device design and optimization can be completed in a few days 
using Comsol RF solver,

• Sensor architecture holds potential for low cost POS clinical 
diagnostic applications.
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