Modeling Hydrogen Permeation through a Thin TiO₂ Film Deposited on Pd Using COMSOL Multiphysics

Zack Qin, Y. Zeng, P. P. Norton, and D. W. Shoesmith

The University of Western Ontario London, Ontario, Canada N6A 5B7

Titanium and Its Alloys

Hydrogen-Induced Cracking (HIC)

- Potentially susceptible to HIC as a consequence of H absorption
- Absorbed hydrogen results in hydride formation and fast crack growth leading to the cracking of Ti and its alloys.

From AECL report 11608

From AECL report 11284

Influence of Oxide Films

- * Ti is generally covered by a thin passive oxide (TiO₂) film.
- The impermeability of this film is the limiting feature preventing HIC in Ti-alloys.
- The mechanism by which TiO_2 influences H permeation is complicated and still not well established.

Critical Questions

- Can hydrogen permeate the oxide film?
- How much the hydrogen
 entering the oxide can
 reach the underlying
 metal?
- How long does it take
 for the absorbed
 hydrogen to permeate
 through the oxide?

TiO₂ Deposited on Pd

- The to complications caused by formation of hydrides in Timetal, a thin TiO_2 film deposited on a Pd foil was used.
- Pd was selected because of its high hydrogen solubility and rapid kinetics for hydrogen absorption and transport.

Hydrogen Permeation Measurements

Hydrogen Permeation Curve

Hydrogen Permeation Model

Hydrogen Permeation in Pd

$$\left|\frac{\partial}{\partial t}C_D^{Pd}(x,t) = D_H^{Pd}\frac{\partial^2}{\partial x^2}C_D^{Pd}(x,t) - \frac{\partial}{\partial t}\left[C_A^{Pd}(x,t) + C_T^{Pd}(x,t)\right]\right|$$

reversible absorption:

$$\frac{\partial}{\partial t}C_A^{Pd}(x,t) = k_A^{Pd}C_D^{Pd}(x,t) - k_D^{Pd}C_A^{Pd}(x,t)$$

irreversible trapping:

boundary conditions:

$$\frac{\partial}{\partial t}C_T^{Pd}(x,t) = k_T^{Pd}\left(1 - \frac{C_T^{Pd}(x,t)}{C_T^S}\right)C_D^{Pd}(x,t)$$

$$-D_{H}^{Pd} \frac{\partial}{\partial x} C_{D}^{Pd} (x = 0, t \le t_{off}) = f_{H} \frac{\dot{i}_{0}}{F}$$
$$C_{D}^{Pd} (x = 0, t > t_{off}) = 0$$
$$C_{D}^{Pd} (x = L_{Pd}, t) = 0$$

initial conditions:

$$C_D(x,t=0) = C_A(x,t=0) = C_T(x,t=0) = 0$$

10

Simulation vs Experiment for Pd

Evolution of H Profiles in Pd

- Steady-state achieved in >14 hrs.
- Reversible absorption is fast, and, hence, always at equilibrium.
- Irreversible trapping sites are saturated after ~ 6 hrs.

TiO₂ Deposited on Pd

- * Large geometric scale variations in TiO_2 and Pd (24nm:0.1mm)
- Three approaches:
- Actual dimensions but different mesh densities simulations appear to yield reasonable results for certain parameter values but not for others.
- Different length scales in the TiO_2 and Pd the diffusion and absorption parameters are normalized accordingly. However, normalization of the flux is ambiguous at the TiO_2/Pd interface.
- Thin layer approximation (Sandwich model) the thin TiO₂ film is replaced by a boundary layer sandwiched between a hypothetical fast diffusion layer (FDL) and the Pd.

Sandwich Model

- * The FDL is a hypothetical layer in which diffusion is so fast that it has a little effect on the subsequent TiO_2 and Pd.
- The thin TiO_2 film is replaced by an interior boundary layer between the FDL and the Pd. Diffusion in TiO_2 is incorporated as interior boundary conditions.
- The Pd is governed by the mass balance equations as stated.

Simulation vs Experiment for TiO₂/Pd

Conclusions

- Models describing hydrogen permeation through a thin TiO₂
 film deposited on Pd were developed and solved using
 COMSOL Multiphysics.
- The model simulation reproduced the experimental permeation curves and yielded values of the permeation parameters required to predict hydrogen absorption into Ti-alloys.
- * The value of D in TiO_2 is three orders of magnitude lower than that in Ti metal, indicating that hydrogen transport through the oxide is responsible for the strong retardation of TiO_2 films on hydrogen permeation.

Electrochemical and Corrosion Studies at Western

Acknowledgements

Funded by National Science & Engineering Research Council of Canada

Simulation Parameters

	Value	Description
i ₀	8 x10 ⁻⁴ A/m ²	charging current density
f _H	0.7325 / 0.6935	charging efficiency (Pd / TiO ₂ +Pd)
t ₀	62000 / 149000 s	charging time (Pd / TiO ₂ +Pd)
L ₀	1 x10 ⁻⁵ m	FDL thickness
L ₁	2.4 x10 ⁻⁸ m	TiO ₂ thickness
L ₂	0.0001 m	Pd thickness
D ₀	$1 \text{ x} 10^{-5} \text{ m}^2/\text{s}$	diffusion coefficient in FDL
D ₁	1 x10 ⁻¹⁷ m ² /s	diffusion coefficient in TiO ₂
D ₂	$3.34 \text{ x} 10^{-11} \text{ m}^2/\text{s}$	diffusion coefficient in Pd
k _A	1 s ⁻¹	absorption rate constant in Pd
k _D	0.0125 s ⁻¹	desorption rate constant in Pd
k _T	10 s ⁻¹	trapping rate constant in Pd
C _T S	0.58 mol/m^3	trapping saturation in Pd

Sandwich Model Equations

$$\frac{\partial}{\partial t}C_0(x,t) = D_0 \frac{\partial^2}{\partial x^2}C_0(x,t) \qquad (D_0 >> D_1, D_2)$$

TiO₂ interface condition:

FDL:

$$J_1(t) = -\frac{D_1}{L_1} \Big(C_2(L_0^+, t) - C_0(L_0^-, t) \Big)$$

Steady-state concentrations:

$$C_0^{ss}(x) = \frac{f_H i_0}{F \cdot D_0} (L_0 - x) + \frac{f_H i_0}{F} \left(\frac{L_1}{D_1} + \frac{L_2}{D_2}\right)$$
$$C_2^{ss}(x) = \frac{f_H i_0}{F \cdot D_2} (L_0 + L_2 - x)$$
$$C_A^{ss}(x) = \frac{k_A}{k_D} C_2^{ss}(x); \quad C_T^{ss}(x) = C_T^s$$

Discharge boundary conditions:

$$D_1 \frac{\partial}{\partial x} C_1(x = L_0, t > t_{off}) = 0$$
$$C_2(x = L_0 + L_2, t > t_{off}) = 0$$