

Weierstraß-Institut für Angewandte Analysis und Stochastik

European COMSOL Conference 2008 Hannover

Numerical Solutions for the Lévêque Problem of Boundary Layer Mass or Heat Flux

Ekkehard Holzbecher

Introduction

 The problem, originally treated by Lévêque in 1928, describes an idealized situation, which appears in many application fields as a limiting case

- There is laminar flow of a free fluid in the gap between two plates of constant spacing *H*.
- Behind an initial undisturbed inflow region one of the boundaries becomes active

Applications

- Heat Transfer
 - Cooling
 - Heating
- Solute Transport
 - Reactive Boundary

W

S

Catalysis

Mathematical Formulation (Flow)

• Hagen-Poiseuille Flow

$$v(y) = v_{\max} \frac{4}{H} y \left(1 - \frac{y}{H} \right)$$

with maximum velocity

$$v_{\max} = -\frac{H^2}{8\eta} \frac{\partial p}{\partial x}$$

is the analytical solution of the steady state Navier-Stokes equations for laminar flow between two plates

Mathematical Formulation (Transport)

• Transport (Advection-Diffusion) Equation

 $\nabla D \nabla c = \mathbf{v} \nabla c$

with diffusivity *D* and velocity *v*.

Nondimensionalization yields:

$$\nabla \nabla c = 4y(1-y)\operatorname{Pe} \nabla c$$

with Peclet-number Pe.

Boundary Condition

- kinetic:
$$D\frac{\partial c}{\partial n} = kc$$

Infinitely fast:

$$c = 0$$

W I A S

Model Region and Boundaries

specified concentration at inflow (Dirichlet condition) convective flux at outflow (Neumann condition)

$$\frac{\partial c}{\partial x} = 0$$

Meshing

• Free Meshes, adaptive grid refinement

- Mapped Meshes
 - Equidistant mesh in horizontal direction (up to 800 nodes)
 - Grid refinement near reactive boundary (up to 100 nodes)

Refined meshes in dependence of the Peclet number

Ре	DOF after 1. refinement	DOF after 2. refinement	Adaptive
0.1	46720	125326	refinement of free meshes
1	46693	122305	
10	43837	114268	
100	37924	99202	
1000	36856	101974	
10 ⁴	40951	110032	
10 ⁵	43177	123433	DOF =
10 ⁶	43231	127339	degree
10 ⁷	42613	120868	of treedom
10 ⁸	42574	124858	

freedom

Results for Pe=0.1, 1 and 10

Concentration distribution:

Red: inflow concentration/ temperature Blue: boundary concentration/ temperature

W

Results for Pe = 10, 100, 1000

Concentration distribution

With increasing Peclet number: Shrinking of the reactive boundary layer

Total Heat or Mass Transfer

• Total heat transfer is given by:

$$\mathrm{Nu} = \frac{1}{L} \int \frac{\partial T}{\partial y} dx$$

the (dimensionless) Nusselt number Nu

• Analogously for total mass transfer holds:

$$\mathrm{Sh} = \frac{1}{L} \int \frac{\partial c}{\partial y} dx$$

the (dimensionless) Sherwood number Sh

Sherwood Number Intercomparison 1

W I A S

Sherwood Number Intercomparison 2

WIAS

Effect of Stabilization

Example runs:

Pe=10⁶

Anisotropic streamline diffusion with parameter 0.1

Concentration profile at the lower part of the outlet boundary

WIAS

Kinetic Reaction

W I A S

Conclusions

- The Lévêque 1/3 power law is perfectly confirmed by the numerical results
- The transition between the two asymptotics appears for Péclet numbers between 0.3 and 30
- The mentioned transition regime is already captured accurately by coarse mesh simulations
- Mapped mesh simulations provide more accurate results than free mesh simulations
- For numerical methods it is a higher challenge to approximate the asymptotic situations than the transition regime

My affiliation has changed:

Ekkehard Holzbecher Georg-August University Göttingen GZG, Applied Geology

ekkehard.holzbecher@geo.uni-goettingen.de