COMSOL Conference 2008 Boston Fourth Annual Conference on Multiphysics Simulation

Renaissance Boston Waterfront October 9-11, 2008 Boston, MA

Development of an Interlinked Curriculum Module for Microchemical Process System Components Using COMSOL Multiphysics

Session on Numerical Methods & Education - October 10, 2008

- Anuradha Nagaraj Department of Electrical Engineering & Computer Science
 - Abhijeet D. Mokal & Patrick L. Mills *

Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville

Texas A&M University - Kingsville Kingsville, Texas USA *Patrick.Mills@tamuk.edu

ChE Curriculum Reform Project - Objectives -

Provide ChE students with the knowledge to:

- Apply fundamental ideas over an expanded range of time and length scales.
- Apply ChE fundamental ideas to emerging application areas.
- Construct solutions for more complex, more open-ended synthesis tasks.
- Transfer fundamentals and knowledge to novel challenges.

Scope of Implementation

- Curriculum Content Reform & Development
 - Course Strings*
 - Interlinked Curriculum Components
 - Service Learning
- Student Assessment and Evaluation
- Faculty Development

*<u>http://www.che.tamu.edu/curriculum-reform/course-strings</u>

Interlinked Curriculum Components (ICCs)

- An ICC is a web-based resource for teaching and learning
- ICC's could be used at many different points in the 4-year ChE curriculum
- ICC's will focus on:
 - Introducing new content not covered elsewhere
 - Reinforcing concepts and fundamentals
 - Demonstrating conservation principles to emerging technologies (nano, bio, energy..)

ICC Components and Topic Coverage

- 5 principal parts
 - Pre-test Topic notes
 - Exercises Post-test
- Conservation & Continuum Principles
- Materials
- Molecular simulation
- Nanotechnology
- Microprocess systems
- Nanotechnology
- Environment and Sustainability
 - ΕΧΑς Ας.Μ

http://che.tamu.edu/orgs/NSFCR/

Microprocess Systems ICC

Objectives:

- Introduce MEMS as applied to microreaction systems
- Broaden exposure to multi-scale analysis 2.
- 3. Strengthen understanding & insight into system behavior

Focus Areas:

- MEMS & microreactors
- Microfluidics Fluid mechanics at the microscale
- Transport phenomena
- Transport-kinetic Interactions
- Device & system design

- Coupled momentum & energy transport
- Coupled momentum, energy, & species transport

Microprocess component & system performance

Microchemical System ICC Modules

- Module I: Fundamentals used for modeling fluid mechanics, heat and mass transfer in microsystems.
- Module II: Development of micro-component simulations and steady-state performance analysis.
- Module III: Expanding steady-state analysis to transient and multi-scale analysis along with process control elements
- Module IV: Simulation of an entire microsystem process by interfacing the various microsystem process components developed in previous modules.

Some Examples of Microprocess System Components

Falling Film Gas-liquid Microreactor

Interdigitial Micromixer for Two-phase Systems

Tee-Micromixer (Glass)

Cross-flow Heat Exchanger

Examples of Module Problems

Microfluidics

- 2-D transient flow in a rectangular channel
- 3-D transient flow in a rectangular channel

Coupled Momentum & Energy Transport

- 2-D steady-state non-isothermal flow in a laminate structure.
- 2-D non-isothermal flow in Si rectangular channel with a Pt laminate heater.

Momentum & Species Transport

- 2-D diffusion example with varying flux.
- 3-D steady-state fluid mixing in a tee-micromixer

2-D Transient Flow in a Rectangular Channel

Model Parameters

- Size: 10 mm x 0.5 mm
- Pressure drop : 0.05 Pa

3-D Transient Flow in a Duct

- Extension of the 2-D model
- 3-D Transient velocity profiles

Model Parameters

- Size: 10 mm x 0.5 mm
- Pressure drop : 0.05 Pa

Effect of Re on Entrance Length in a Microchannel – Definition

• Objective: Study the developing transient velocity profile and entrance length effect with varying Re.

• Key Assumptions

- Newtonian, Incompressible fluid
- No external forces other than pressure difference
- No frictional losses

Model Equations

- Dimensionless Navier-Stokes equations

$$\frac{\partial u^{*}}{\partial t^{*}} + (u^{*} \bullet \nabla)u^{*} + \nabla p^{*} = \nabla \bullet \frac{1}{\text{Re}} (\nabla u^{*} + (\nabla u^{*})^{\mathsf{T}}) + F^{*}$$

 $\nabla \bullet u^* = 0$

where: $u^*=u/U$ $t^*=tU/L$, L being an a $p^*=p/(\rho U^2)$ $F^*=FL/(\rho U^2)$

L being an appropriate length scale,

Effect of Re on Entrance Length in a Microchannel – Simulation

Effect of Re on Entrance Length in a Microchannel – Parametric Study

Analytical vs Simulated Entry Length

• Analytical formula to calculate the entry length in micro-processes calculated by Atkinson *et al.* using the FEM

$$\frac{Le}{D} = 0.59 + 0.056 \text{ Re}$$

Le = Entrance length

D = Pipe diameter or channel height

Re	(Formula)*10 ⁻³	(Simulated)*10 ⁻³
1	0.646	0.7
5	0.87	0.75
10	1.15	1
15	1.43	1.3
20	1.71	1.6
25	1.99	1.8
30	2.27	2.1
35	2.55	2.4
40	2.83	2.8
45	3.11	3
50	3.39	3.2

3-D Steady State Fluid Mixing in a Tee Micromixer - Simulations

Concentration Profile

Velocity Profile

Tee Micromixer: Mixing Effectiveness and Assessment of Mixing Quality

Mixing Effectiveness

 $\tau = T_v / T_D = D L / v h^2 \quad \text{where} \qquad T_v = L / v$

 $T_D = h^2/D$

 $\boldsymbol{\tau}$ can be used to make predictions for mixing effectiveness

- A low τ means fluid moves faster along the channel length compared to transverse diffusion.
- Measure of Mixing
 - For a simple 2D case, the measure of mixing is defined as

Measure of Mixing =
$$1 - \left\{ \int_{0}^{h} \frac{(c(y) - \frac{c0}{2})}{Li.c0} dy \right\}$$

where: c= concentration,

Li= size of the inlet of the mixing channel,

 c_0 = initial concentration for the mixing channel

Measure of Mixing = 1 Perfect mixing

Measure of Mixing = 0 No mixing

Tee Micromixer: Effect of τ on the Measure of Mixing

- Vary τ by varying the fluid inlet velocity
- Evaluate mixing effectiveness and the measure of mixing

Tee Micromixer: Effect of Peclet Number on Mixing Quality

 $Pe = u L / D = (L^2/D) / (L/u) = Diffusion time / Transport time$

Solute Concentration Profiles vs Pe

Tee Micromixer with Different Obstacles - Concentration Profiles

Objective

To examine the effect of different obstacles & varying velocities on mixing quality

Tee Micromixer with Different Obstacles - Simulations

Effect of Fluid Velocity on the Measure of Mixing

Velocity	Measure of Mixing			
m/s	No obstacle	One circular obstacle	Two circular Obstacles	Baffled obstacles
0.005	0.9672	0.96612	0.9987	0.9987
0.007	0.9515	0.9505	0.952727	0.9946
0.008	0.9454	0.944424	0.9468	0.991576
0.009	0.94027	0.93925	0.941725	0.988
0.01	0.9358	0.9348	0.9373	0.984142

• Students can readily quantify the effects of various system parameters

Micro-scale Heat Exchanger

- Objective
 - Compare the heat exchanger effectiveness factor for various aspect ratios and fluid contacting patterns
 - Demonstrate solutions for the conduction-convection equation for a 3-D geometry
- Model Geometry

Dimensions

- Length of each slab
- Width of each slab
- Height of each slab
- No. of Microchannels
- Microchannel width
- Microchannel height
- Mat'l of Construction

800 μm 800 μm 60 μm 5 100 μm 30 μm Steel

Velocity Profiles

Temperature Profiles

Surface Plot

Isosurface Plot

Micro-Heat Exchanger Effectiveness Based on Aspect Ratio

 The aspect ratio (h/w) of the 3-D MEMS heat exchanger is varied by altering the height (h) of the microchannel

• Effectiveness Factor
$$\varepsilon = -\frac{Q}{Q_{max}} = \frac{m C_p (T_{hot, in} - T_{hot, out})}{m C_p (T_{hot, in} - T_{cold, in})}$$

		Aspect	T _{h,out}	T _{c,out}	Effectiveness
h, μm	w , μ m	Ratio	K	K	Factor
			312.17	317	0.5943
30	100	0.3			
40	100	0.4	311.73	318.23	0.6090
50	100	0.5	311.39	318	0.6203

Comparing Cocurrent, Countercurrent and Cross Flow

• Compare the effectiveness factor for various contacting modes

2-D Steady-State Non-isothermal Flow in a Laminate Structure

- A non-isothermal temperature profile is obtained for a fluid flowing through a rectangular laminate along with a laminar velocity profile.
- The velocity and temperature profiles
 obtained for the micro scale are compared with those obtained from a conventional scale model with the same residence time.

2-D Steady-State Non-isothermal Flow in a Laminate Structure

Conventional Model

Velocity Profile

Micro-scale Model

Temperature Profile

2-D Steady-State Non-isothermal Flow in a Laminate Structure

Comparison of Results

<u>Parameter</u>	<u>Conventional</u> <u>Model</u>	<u>Micro-scale</u> <u>Model</u>
Mean Residence Time	1 s	1 s
Maximum Velocity, m/s	1.511	0.0151
Maximum Temperature, K	352.78	352.78

2-D Non-isothermal Flow in a Si Microchannel with Wall-Catalyzed Reaction

- Mass, energy and momentum equations are coupled to find the temperature & concentration profiles for a wall-catalyzed reaction involving a dilute solute
- Multi-laminate structure with Pt-Si layer on top of the channel.
- Model Dimensions
 Pt heater: 20 mm x 0.1 mm
 Si layer: 20 mm x 0.1 mm
 Fluid channel: 20 mm x 0.6 mm

Concentration Profiles

Homogenous Gas Phase Tee Microreactor

• Single Gas-phase Homogeneous Reaction $a A + b B \rightarrow c C + d D$

- Transient Convection-Diffusion Equation for Each Specie

Concentration Profiles

Learning Objectives

(May be Mapped to ABET Outcomes)

- 1. Learned to work within budget constraints
- 2. Applied course material to real-life, open-ended project
- 3. Established connection between Chemical Engineering discipline and community, people, and values.
- 4. Learned simple project management tools
- 5. Enhanced understanding of societal impacts of engineering
- 6. Demonstrated understanding of environmental and sustainability issues in regard to water and energy conservation, and waste minimization
- 7. Identified the needs of low-income families and evaluated the importance of volunteer work
- 8. Better understood how a non-profit organization works
- 9. Extended experience in written and oral communication with a diverse audience of peers, faculty advisors, and community partners.
- 10. Learned to acquire information and knowledge independently as deemed by the project
- 11. Demonstrated ability to function in peer teams

- Development of additional examples with broader capability
- Integration of microcomponents into microprocess systems

