USNA "Grants" Seminar

Decomposition of Spectra from the Drum

With Applications to the Chesapeake Bay

Kevin McIlhany, Physics Dept. USNA

Outline

- Review of Problem Statement / History
- Motivation / Applications
- Methods Applied Toy Problems
- Analysis
- Conclusions

Drumhead Problem

- Given a sample of a drums sound, attempt to calculate the amplitudes of the modes
 - time-series at location of microphone
- Related to a famous problem posed by mathematician Mark Kac (1966) asking: "Can One Hear the Shape of a Drum?"
- Lead to idea of iso-spectral drums

Isospectral Drums

 Drums with differing boundaries that have identical k_n values – so they sound alike!

Milnor, 1966 ... Driscoll, 1997 SIAM

Outline

- Review of Problem Statement / History
- Motivation / Applications
- Methods Applied Toy Problems
- Analysis
- Conclusions

Why Measure the Amplitudes?

- Being able to measure modes strengths suggests dynamics about the system.
- By measuring "windows" in time that overlap, the time-dependence of the amplitudes can be seen.
- Energy conservation once a mode is excited, where does the energy go?
- Lead to prediction of amplitudes beyond the time window (forecasting).

Outline

- Review of Problem Statement / History
- Motivation / Applications
- Methods Applied Toy Problems
- Analysis
- Conclusions

Methodology

- Three key issues:
 - Delta Function
 - Solution Architecture
 - Degeneracy of States
- Midn 1/C Grant Hundley
 - Developed a drum simulator
 - Working on numerical scheme to extract amplitudes from simulated time-series

Delta Function

$$\begin{array}{lcl} u(x,t) & = & \displaystyle \sum_{n=0}^{\infty} \left[a_n(t) \sin(k_n x) + b_n(t) \cos(k_n x) \right] \\ \\ a_m(t) & = & \displaystyle \frac{1}{L} \int_{-L}^{+L} u(x,t)_{data} \sin(k_m x) dx \\ \\ a_m(t) & = & \displaystyle \frac{1}{L} \int_{-L}^{+L} \sum_{n=0}^{\infty} \left[a_n(t) \sin(k_n x) + b_n(t) \cos(k_n x) \right] \sin(k_m x) dx \\ \\ a_m(t) & = & \displaystyle \sum_{n=0}^{\infty} \left[a_n(t) \frac{1}{L} \int_{-L}^{+L} \sin(k_n x) \sin(k_m x) dx + b_n(t) \frac{1}{L} \int_{-L}^{+L} \cos(k_n x) \sin(k_m x) dx \right] \\ \\ a_m(t) & = & \displaystyle \sum_{n=0}^{\infty} \left[a_n(t) \delta_{nm} + b_n(t) \emptyset \right] \\ \\ a_m(t) & = & \displaystyle \Delta_{mn} a_n(t) \\ \\ a_n(t) & = & \displaystyle \int u(x,t)_{data} \sin(k_n x) dx \\ \\ b_n(t) & = & \displaystyle \int u(x,t)_{data} \cos(k_n x) dx \\ \\ \end{array}$$

Delta Function Assumptions

$$\omega_n = \frac{n*\pi}{2T}$$
 and $\omega_m = \frac{m*\pi}{2T}$

 ω_{n} and ω_{m} have integer relationship

$$(T_1 = 4T)$$

Wavelength is set from the window and is symmetric

$$\delta_{mn} = \frac{1}{T} \int_{-\pi}^{\pi} \sin(\omega_n t) \sin(\omega_m t) dt$$

$$\emptyset = \frac{1}{T} \int_{-T}^{+T} \cos(\omega_n t) \sin(\omega_m t) dt$$

fail.

$$\Delta_{mn} = \frac{1}{T} \int_{-T}^{+T} \sin(\omega_n t) \sin(\omega_m t) dt$$

$$\varepsilon_{mn} = \frac{1}{T} \int_{-T}^{+T} \cos(\omega_n t) \sin(\omega_m t) dt$$

Define: Delta and Epsilon Should these conditions

Delta Function

$$\Delta_{mn} = \frac{1}{T} \int_{-T}^{+T} \sin(\omega_n t) \sin(\omega_m t) dt$$

$$\Delta_{mn} = \frac{1}{2T} \int_{-T}^{+T} \left[\cos \left((\omega_n - \omega_m) t \right) - \cos \left((\omega_n + \omega_m) t \right) \right] dt$$

$$\Delta_{mn} = \frac{1}{2T} \frac{1}{\omega_n - \omega_m} \sin\left((\omega_n - \omega_m)x\right) \Big|_{-\frac{T}{2}}^{+T} - \frac{1}{2T} \frac{1}{\omega_n + \omega_m} \sin\left((\omega_n + \omega_m)x\right) \Big|_{-\frac{T}{2}}^{+T}$$

$$\Delta_{mn} = \frac{1}{2T} \frac{1}{\frac{(n-m)\pi}{2T}} \sin\left(\frac{(n-m)\pi}{2T}x\right) \bigg|_{-T}^{+T} - \frac{1}{2T} \frac{1}{\frac{(n+m)\pi}{2T}} \sin\left(\frac{(n+m)\pi}{2T}x\right) \bigg|_{-T}^{+T}$$

$$\Delta_{{}^{mn}} \quad = \quad \frac{2}{\pi(n-m)} \sin(\; \frac{\pi}{2}(n-m)) \quad - \quad \frac{2}{\pi(n+m)} \sin(\; \frac{\pi}{2}(n+m)), \qquad \text{for even } n \rightarrow 2n$$

$$\Delta_{_{m\,n}} \quad = \quad \mathrm{sinc}(n-m) \quad - \quad \mathrm{sinc}(n+m),$$

assuming m is free (real)

assuming n is even amd m is an integer

$$\varepsilon_{mn} = \frac{1}{T} \int_{-\pi}^{+T} \sin(\omega_n t) \cos(\omega_m t) dt$$

$$arepsilon_{mn} = rac{1}{2T} \int_{-\pi}^{+\tau} \left[\sin \left((\omega_n - \omega_m) t \right) - \sin \left((\omega_n + \omega_m) t \right) \right] dt$$

$$\varepsilon_{mn} = \emptyset$$

Delta Function ~ Sinc(pi*(n-m))

The Δ_{nm} function shown below shows its clear approximation to δ_{nm} when (n,m) are integers. Also shown are the twin responses at (-m,+m) for the n=10 case.

Delta & Epsilon Function

- Delta function is a measure of the "mixing" between the eigenmodes.
- Slightly different Delta fucntion for the cos*cos term (more on this later).
- Epsilon will be identically zero for symmetric domains.

Epsilon($\omega_{\rm m}$)

Amplitude

Epsilon Timing Resolution Function

$$\epsilon(\omega_{\rm m}=10)=\cos(\pi^*(10-x))/(\pi^*(10-x))-\cos(\pi^*(10+x))/(\pi^*(10+x))$$

Solution Architecture: Solutions to space-time problems

$$u(x,t) = f(x) \cdot g(t)$$

$$\begin{split} f(x) &= \sum_{n=0}^{\infty} A_n f_{\scriptscriptstyle D}(k_{\scriptscriptstyle n} x) + B_n f_{\scriptscriptstyle N}(k_{\scriptscriptstyle n} x) \\ g(t) &= \sum_{n'=0}^{\infty} C_{n'} g_{\scriptscriptstyle D}(\omega_{\scriptscriptstyle n'} t) + D_{n'} g_{\scriptscriptstyle N}(\omega_{\scriptscriptstyle n'} t) \end{split}$$

$$u(x,t) = \left[\sum_{n=0}^{\infty} A_n f_{\scriptscriptstyle D}(k_{\scriptscriptstyle n} x) + B_n f_{\scriptscriptstyle N}(k_{\scriptscriptstyle n} x)\right] \left[\sum_{n'=0}^{\infty} C_{n'} g_{\scriptscriptstyle D}(\omega_{\scriptscriptstyle n'} t) + D_{n'} g_{\scriptscriptstyle N}(\omega_{\scriptscriptstyle n'} t)\right]$$

$$u(x,t) = \left[\sum_{n=0}^{\infty} AC_{_{n}} f_{_{D,n}} g_{_{D,n}} + BC_{_{n}} f_{_{N,n}} g_{_{D,n}} + AD_{_{n}} f_{_{D,n}} g_{_{N,n}} + BD_{_{n}} f_{_{N,n}} g_{_{N,n}} \right]$$

$$u(x,t) = \left[\sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} AC_{_{nn'}} f_{_{D,n}} g_{_{D,n'}} + BC_{_{nn'}} f_{_{N,n}} g_{_{D,n'}} + AD_{_{nn'}} f_{_{D,n}} g_{_{N,n'}} + BD_{_{nn'}} f_{_{N,n}} g_{_{N,n'}} \right]$$

Nature of Eigenmodes with both space and time in solution

- Two types:
 - Coupled for each k eigenvalue in space there exists a unique ω eigenvalue in time
 - Dispersion relationship, $\omega(k)$, for most differential equations in (x,t).
 - Dispersion relationship is generally monotonic and increasing.
 - Decoupled for systems not well motivated physically, yet can be described with a spacetime basis set (river bank problem).

Solution Architecture

$$lpha_m = rac{1}{T} \int_{-T}^{+T} \sin(\omega_m t) \ u(x_1, t) \ dt$$

$$eta_m = rac{1}{T} \int_{-T}^{+T} \cos(\omega_m t) \ u(x_1, t) \ dt$$

At one location, x1, sample the data in a time-series.

Project out the sin and cosines.

$$\begin{array}{c|c} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_m \\ \hline \\ \beta_1 \\ \beta_2 \\ \beta_8 \\ \vdots \\ \beta_m \\ \end{array} \right) = \begin{array}{c|c} \begin{pmatrix} g_D(\omega_1 t) \\ g_D(\omega_2 t) \\ g_D(\omega_3 t) \\ \vdots \\ g_D(\omega_n t) \\ \hline \\ g_D(\omega_n t) \\ g_D(\omega_n t) \\ \hline \\ \otimes \\ \end{array} \\ & \otimes \\ \\ \begin{pmatrix} g_D(\omega_1 t) g_D(\omega_2 t) \dots g_D(\omega_n t) \\ g_D(\omega_1 t) g_D(\omega_2 t) \dots g_D(\omega_n t) \\ \vdots \\ g_D(\omega_n t) \\ \hline \\ g_D(\omega_n t) \\ \vdots \\ g_D(\omega_n t) \\ \hline \\ g_D(\omega_n t) \\ \\ & \otimes \\ \\ \end{pmatrix} \\ & \otimes \\ \\ \begin{pmatrix} dC_1 \\ AC_2 \\ AC_3 \\ \vdots \\ AC_n \\ \hline \\ G_D(k_1 x_1) \\ \vdots \\ G_D(k_2 x_1) \\ \vdots \\ G_D(k_2 x_1) \\ \vdots \\ G_D(k_2 x_1) \\ \end{bmatrix} \\ \begin{pmatrix} AC_1 \\ AC_2 \\ AC_3 \\ \vdots \\ AC_n \\ \hline \\ AD_1 \\ AD_2 \\ AD_3 \\ \vdots \\ AD_n \\ \end{pmatrix} \\ & \otimes \\ \\ \begin{pmatrix} G_D(k_1 x_1) \\ G_D(k_2 x_1) \\ \vdots \\ G_D(k_n x_$$

outer product becomes matrix of Δ_{mn} and ε_{mn}

Solution Architecture

- Mixing nature of Delta, Epsilon matrix can clearly be seen.
- No nodes can exist in the f(k*x) matrix.
- Solve for Amplitudes thru matrix inversion.

Solution Architecture

Short-hand notation:

$$\begin{pmatrix} \overrightarrow{\alpha} \\ \overrightarrow{\beta} \end{pmatrix} = \begin{pmatrix} \Delta_t & \varepsilon_t \\ \varepsilon_t^{\dagger} & \Delta_t^{\circ} \end{pmatrix} \begin{pmatrix} \overrightarrow{f_{\scriptscriptstyle D}} & \mathcal{O} \\ \mathcal{O} & \overrightarrow{f_{\scriptscriptstyle D}} \end{pmatrix} \begin{pmatrix} \overrightarrow{AC} \\ \overrightarrow{AD} \end{pmatrix}$$

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \Delta_t & \varepsilon_t \\ \varepsilon_t^{\dagger} & \Delta_t^{\circ} \end{pmatrix} \begin{pmatrix} f_{\scriptscriptstyle D} & \mathcal{O} \\ \mathcal{O} & f_{\scriptscriptstyle D} \end{pmatrix} \begin{pmatrix} AC \\ AD \end{pmatrix}$$

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{array}{ccc} \frac{1}{T} \int_{-T}^{+T} \begin{pmatrix} g_{_{D}} \\ g_{_{N}} \end{pmatrix} \otimes \begin{array}{ccc} (g_{_{D}} \ g_{_{N}}) \\ O \end{array} \begin{pmatrix} f_{_{D}} & O \\ O \end{array} \begin{pmatrix} AC \\ AD \end{array} \end{pmatrix} dt = \begin{array}{ccc} \frac{1}{T} \int_{-T}^{+T} \begin{pmatrix} g_{_{D}} \\ g_{_{N}} \end{pmatrix} \otimes \begin{array}{ccc} (g_{_{D}} \ g_{_{N}}) \\ AD \cdot f_{_{D}} \end{array} \end{pmatrix} dt$$

$$\left(\begin{array}{c} \alpha_m \\ \beta_m \end{array} \right) = \begin{array}{c} \frac{1}{T} \int_{-T}^{+T} \left(\begin{array}{c} g_{_{Dm}} \\ g_{_{Nm}} \end{array} \right) \otimes \\ \sum_{n=0}^{\infty} \left[AC_{_n} \cdot f_{_D}(k_{_n} \cdot x_1) \cdot g_{_{Dn}} \right. \\ \left. + AD_{_n} \cdot f_{_D}(k_{_n} \cdot x_1) \cdot g_{_{Nn}} \right] dt = \\ \left. \begin{array}{c} \frac{1}{T} \int_{-T}^{+T} \left(\begin{array}{c} g_{_{Dm}} \\ g_{_{Nm}} \end{array} \right) \otimes \\ \left. u(x_1, t) \right. \\ \left. dt \right.$$

Drum – Specific Solutions

- Drum problem: membrane stretched over a circular boundary (Dirichlet bc).
- Strike the drum.
- Use a microphone to record the timeseries.
- Fourier analyze the time-series to obtain amplitudes for each ω_m : A_n

Drum

$$u(x,t) = \sum_{n=0}^{\infty} \left[A_n J_n(k_n r) \sin(n\theta) + B_n J_n(k_n r) \cos(n\theta) \right] \left[C_n \sin(\omega_n t) + D_n \cos(\omega_n t) \right]$$

$$u(r,t) = \sum_{(n,n')=0}^{\infty} \left[A_{nn'} J_n(k_{nn'}r) \sin(n\theta) + B_{nn'} J_n(k_{nn'}r) \cos(n\theta) \right] \left[C_{nn'} \sin(\omega_{nn'}t) + D_{nn'} \cos(\omega_{nn'}t) \right]$$

- Spatial modes are a combination
 of Bessel function, J(k_nr) times sin(nθ)
 or cos(nθ)
- Temporal modes use sin(ω_nt) or cos(ω_nt)
- For each Bessel function, there exists multiple zero crossings, n'
- k_n values are non-integerlike, so ω_n fail conditions for orthonormality

Table 1: Bessel Function Zero Crossings

n	$J_0(x)$	$J_1(x)$	$J_2(x)$	$J_3(x)$	$J_4(x)$	$J_5(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

Table 2: Bessel Function Zero Crossings

Des	sei run	CHO		Or
-	$k_{nn'}$	n	n'	
	2.4048	0	1	
	5.5201	0	2	
	8.6537	0	3	
	11.792	0	4	
	3.8317	1	1	
	7.0156	1	2	
	10.173	1	3	
	13.324	1	4	
	5.1356	2	1	
	8.4172	2	2	
	11.62	2	3	
	14.796	2	4	
	6.3802	3	1	
	9.761	3	2	
	13.015	3	3	
	16.223	3	4	
	7.5883	4	1	
	11.065	4	2	
	14.373	4	3	
	17.616	4	4	
100			53	

Table 3: Bessel Function Zero Crossings

$k_{nn'}$	n	n'
2.4048	0	1
3.8317	1	1
5.1356	2	1
5.5201	0	2
6.3802	3	1
7.0156	1	2
7.5883	4	1
8.4172	2	2
8.6537	0	3
9.761	3	2
10.173	1	3
11.065	4	2
11.62	2	3
11.792	0	4
13.015	3	3
13.324	1	4
14.373	4	3
14.796	2	4
16.223	3	4
17.616	4	4

Degeneracy of States

Degeneracy and Sampling

- Due to symmetry in the solution, degenerate states are produced.
- Due to degeneracy, there is a 2-1 ratio of unknowns-knowns.
- Solution: add another sample location

	March 200		-CANADOM	Machine 4	200000000000000000000000000000000000000	A STATE OF THE PARTY OF					
$\left(\begin{array}{c} \alpha_1 \end{array}\right)$	Δ_{11}	Δ_{12}	Δ_{13}		Δ_{1m}	$arepsilon_{11}$	ε_{12}	$arepsilon_{13}$		ε_{1m}	$\int J_0(k_{01}r_1)\sin(0\; heta_1)\cdot AC_1 + J_0(k_{01}r_1)\cos(0\; heta_1)\cdot AC_2$
α_2	Δ_{21}	Δ_{22}	Δ_{23}		Δ_{2m}	$arepsilon_{21}$	ε_{22}	ε_{23}		$arepsilon_{2m}$	$J_1(k_{11}r_1)\sin(1 \theta_1)\cdot AC_3 + J_1(k_{11}r_1)\cos(1 \theta_1)\cdot AC_4$
$\alpha_{_3}$	Δ_{31}	Δ_{32}	Δ_{33}		$\Delta_{\Im m}$	$arepsilon_{31}$	$arepsilon_{32}$	€33		$arepsilon_{\Im m}$	$J_2(k_{21}r_1)\sin(2 heta_1)\cdot AC_5 + J_2(k_{21}r_1)\cos(2 heta_1)\cdot AC_6$
	:				•	:					i i
α_m	Δ_{m1}	Δ_{m2}	Δ_m 3		Δ_{mm}	ε_{m1}	ε_{m2}	$arepsilon_{m3}$		$arepsilon_{mm}$	$J_n(k_{nn'}r_1)\sin(n\; heta_1)\cdot AC_{n-1} + J_n(k_nr_1)\cos(n\; heta_1)\cdot AC_n$
	<u> </u>										
$oldsymbol{eta}_1$	$arepsilon_{11}$	$arepsilon_{21}$	€31		$arepsilon_{m1}$	Δ_{11}°	Δ_{12}°	Δ_{13}°		$\Delta_{1m}^{^c}$	$J_{0}\left(k_{01}r_{1} ight)\sin(0\; heta_{1})\cdot AD_{1}+J_{0}\left(k_{01}r_{1} ight)\cos(0\; heta_{1})\cdot AD_{2}$
$oldsymbol{eta}_2$	$arepsilon_{12}$	$arepsilon_{22}$	$arepsilon_{32}$		$arepsilon_{m2}$	$\Delta_{21}^{^{o}}$	Δ_{22}°	Δ_{23}^{c}		$\Delta_{2m}^{^{c}}$	$J_{1}\left(k_{11}r_{1} ight)\sin(1\; heta_{1})\cdot AD_{3}+J_{1}\left(k_{11}r_{1} ight)\cos(1\; heta_{1})\cdot AD_{4}$
$oldsymbol{eta}_3$	$arepsilon_{13}$	$arepsilon_{23}$	€33		$arepsilon_m$ 3	Δ_{21}°	Δ_{32}°	$\Delta_{\tt 33}^{\it o}$		$\Delta_{3m}^{^{o}}$	$J_2(k_{21}r_1)\sin(2\; heta_1)\cdot AD_{\mathtt{S}} + J_2(k_{21}r_1)\cos(2\; heta_1)\cdot AD_{6}$
	:			٠.	i	:			٠.	:	
β_m	$igl(arepsilon_{1m}$	$arepsilon_{2m}$	ε_{3m}		$arepsilon_{mm}$	Δ_{m1}°	Δ_{m2}°	Δ_{m3}^c	• • • •	Δ_{mm}°)	$\left[\left\langle J_n(k_{nn'}r_1)\sin(n\;\theta_1)\cdot AD_{n-1} + J_n(k_nr_1)\cos(n\;\theta_1)\cdot AD_n \right. \right]$
$2 \cdot m \times 1$					2.m.	√2.m					$2 \cdot m \times 1$

 $2 \cdot m$

Second Location

Calculating the Amplitudes

Drum Solution in Short-hand

 Number of sample locations "squares-off" the degeneracy matrix, allowing the system to be solvable.

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \eta \end{pmatrix} = \begin{pmatrix} \Delta_t & O \\ O & \Delta_t \end{pmatrix} \begin{bmatrix} \begin{pmatrix} & \mathbb{D} & & \\ & \mathbb{D} & & \\ & &$$

$$\begin{pmatrix} AC \\ AD \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} & \mathbb{D} & & \\ & & \mathbb{D} & \\ & & & \\ \end{pmatrix} = \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} = \begin{bmatrix} & & & & \\ &$$

Drum Problems

- n=0 sin(nθ) term needs to be removed, breaking the 2-1 ratio to less than 2-1.
- Test method against drum simulation, with known inputs to the amplitudes, An.
- Further degeneracies exist due to closeness of k-eigenvalues.

Chesapeake Bay Problems

- No known analytic solution to the Bay (ie. No analytic hints as to any degeneracy)
- At a given samples location, calculate the projections, (α_m, β_m) for a range of (ω_m, T) .
- Observe the patterns of ω_m and compare the sequence to k_n's.
- Guess the dispersion relationship (map from k_n to ω_m

Degeneracy of States

- From observables at frequencies ω_m, observe projection changes as the period,T, is changed.
- Select an appropriate period, T.
- Construct Degeneracy matrix based on best guess of dispersion relation as well as k-eigenvalues density.

Timing Resolution Nature of Delta Matrix

Delta (ω_m, T)

Delta(ω_{m} ,T)

Future Plans:

- Run thru the toy model (Drum).
- Add source terms to Chesapeake Bay model.
- Add Delta(spatial) matrix.

Acknowledgements

- Student: MIDN 1/C Grant Hundley
- Collaborator: Reza Malek-Madani
- James W. Kinnear (USN Ret.)

Chesapeake Bay Problem

- Take data at stations around the Bay, collecting time-series of vector flows.
- How many stations are needed to provide enough data to fully calculate the modes?

Image Processing of the Chesapeake

Advantages

Eigenmodes fill domain (space), suggest future behavior

