Coupled Electromagnetics-Multiphase Porous Media Model for Microwave Combination Heating

Vineet Rakesh and Ashim Datta Biological & Environmental Engineering Cornell University

2008 COMSOL Conference

Contents

Introduction and objectives

- Fully coupled electromagneticsmultiphase porous media model
 - > Governing Equations
 - > Implementation
 - > Results
- Conclusions
- Ongoing Work

Goals Convection-

Radiant Heating

Used for cookingSlow

Microwave Heating

- Fast and convenient
- Non-uniform heating
- Mostly used for reheating

Combination Heating

- Fast and convenient
- Can be used for cooking
- Can provide custom cooking ability

Modeling Methods

Primary Variables: microwave energy deposition, temperature, moisture, pressure

Present work

Fully Coupled Electromagnetics- Heat and Mass Transfer with pressure driven flow (multiphase porous media model) : in 3D

Process Description

- Microwave, hot air, radiant heating
- Multiphase transport in sample treated as a porous medium^{1,2,3}
 Heat transfer

¹Whitaker S., Advanced Heat Transfer, **13**, 119-203 (1997)

²Ni H., Datta, A. K. and Torrance, K. E., International Journal of Heat and Mass Transfer, **42**, 1501-12 (1999) ³Halder A., Dhall A., and Datta A. K., Food & Bioproducts Processing, 85, 209-19 (2007)

Governing equations: Electromagnetics

• Maxwell's equations:

 $\nabla \times \mathbf{E} = -j\omega\mu\mathbf{H}$ **E** = Electric field intensity

 $\nabla \times \mathbf{H} = j\omega \varepsilon \varepsilon_0 \mathbf{E}$ **H** = Magnetic field intensity

 $\nabla \cdot (\boldsymbol{\varepsilon} \mathbf{E}) = \mathbf{0}$

 $\nabla \cdot \mathbf{H} = \mathbf{0}$

 ω = microwave angular

frequency

dielectric loss

Relative permittivity: $\varepsilon = \varepsilon' - j\varepsilon''$ dielectric constant

• Boundary condition (oven walls): $E_{tangential, oven wall} = 0$

• Power absorbed (by the sample): $Q_{mic} = \frac{1}{2} \omega \varepsilon_0 \varepsilon'' |\mathbf{E}|^2$

Governing Equations: Multiphase Porous Media Model

Momentum balance

> Darcy's Law:

$$\mathbf{v_i} = -\frac{k_i k_{r,i}}{\mu_i} \nabla P$$

for water and gas (vapor/air)

G.E.- Mass balance

• Liquid phase (water): $\frac{\partial c_{w}}{\partial t} + \nabla \cdot \left(\mathbf{n}_{w} \right) = -I$ flux phase $\mathbf{n}_{\mathbf{w}} = -\rho_{w} \frac{kk_{r}}{\mu} \nabla \left(P - p_{cap}\right) = -\rho_{w} \frac{kk_{r}}{\mu} \nabla P + \rho_{w} \frac{kk_{r}}{\mu} \frac{\partial p_{cap}}{\partial S_{w}} \nabla S_{w}$ $D_{w} = -\frac{kk_{r}}{\varphi \mu} \frac{\partial p_{cap}}{\partial S_{w}} \qquad c_{w} = \rho_{w} \varphi S_{w}$ $\frac{\partial c_{w}}{\partial S_{w}} + \nabla \left(z_{w}\right) = 0 \qquad (1)$ $\frac{\partial c_w}{\partial t} + \nabla \cdot (\rho_w \mathbf{v}_w) = \nabla \cdot (D_w \nabla c_w) - \dot{I}$ bulk flow capillary phase flow change • Gas phase (vapor and air): $\frac{\partial c_g}{\partial t} + \nabla \cdot (\rho_g \mathbf{v_g}) = \mathbf{i}$ bulk flow phase change

G.E.- Mass balance (contd..)

• Vapor:

$$\frac{\partial c_v}{\partial t} + \nabla \cdot \left(\rho_g \omega_v \mathbf{v_g} \right) = \nabla \cdot \left(\varphi S_g \frac{C^2}{\rho_g} M_a M_v D_{eff,g} \nabla x_v \right) + \dot{I}$$

bulk flow
binary diffusion (vapor and air)
$$\omega_v + \omega_a = 1$$

mass fractions

Our Phase change[#] (evaporation/ condensation):

$$\dot{I} = K \frac{M_{\nu}}{RT} \left(p_{\nu,eq} - p_{\nu} \right)$$

#Halder A., Dhall A., and Datta A. K., Food & Bioproducts Processing, 85, 209-19 (2007)

G.E.- Energy balance

> Fluxes:

 $\mathbf{n}_{\mathbf{v}} = \rho_{g} \omega_{v} \mathbf{v}_{g}$ $\mathbf{n}_{a} = \rho_{g} \omega_{a} \mathbf{v}_{g}$ $\mathbf{n}_{w} = \left[\rho_{w} \mathbf{v}_{w} - D_{w,cap} \nabla c_{w}\right]$

water flux due to liquid pressure, $P - p_{cap}$

> Average thermal conductivity: $k_{eff} = (1 - \varphi)k_s + \varphi \left\{ S_w k_w + S_g \left(\omega_v k_v + \omega_a k_a \right) \right\}$

Boundary Conditions Vapor convection $P = P_{amb}$ $n_v = h_m c_v$ Liquid pumping $n_w = \rho_w u_w$, when $S_w = 1$ $-k\frac{\partial T}{\partial n} = h(T - T_{oven}) - n_v c_{pv} T - n_w c_{pw} T$ Sample when $S_w = 1$ Hot air & radiant heating Insulated

Oven at temp, Toven

Computational Scheme

Solve Maxwell's equations of Electromagnetics

Source term for microwave heating

Update dielectric properties

Solve multiphase porous media model in the sample

Implementation

 Equations coupled using scripting in COMSOL

Problems

- > 3D first time- EM (~2.4M DOFs) and Porous media (~200k DOFs): 42 hrs for 10 min heating: 16 Gb RAM
- Different mesh and solver (stationary, transient, iterative/ direct) needed for the two physics
- To make equations implementable in COMSOL additions terms were addedconvergence problems

Computed Results

Temperatures & moisture distributions after 10 min of heating

Microwave(10s/50 on), radiant & hot air

Max: 3.962

3.96

3.95

3.94

3.93

3.92

3.91

3.9

Min: 3.90

Radiant & hot air

Microwave combination heating increases the speed of heating while maintaing the uniformity

Conclusions

- First study complex coupling of Maxwell's equations with a multiphase porous media model
- Optimum combination of heating parameters can be developed that can speed up the process and maintain heating uniformity at the same time
- Results can be used to develop design recommendations for combination heating for different thermal processes

Ongoing Work

- Experimental validation using Magnetic Resonance Imaging (MRI): UC Davis
- Coupled multiphase porous mediasolid mechanics model to study processes with large volume change (e.g. microwave puffing)

Acknowledgements

USDA Grant

- GE for the oven
- Research group members(BEE, Cornell University)
 - > Amit Halder
 - > Ashish Dhall

Questions?

Thank You!