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Introduction: Interstitial Photodynamic Therapy (I-
PDT) is a promising palliative treatment option for 
refractory, locally advanced head and neck squamous 
cell carcinoma (LA-HNSCC) [1, 2]. I-PDT involves the 
activation of a photosensitizing drug by a therapeutic 
light dose, which results in damage to the cancerous 
tissue. In I-PDT, light is provided via catheter embedded 
fiber optics. Due to the complex anatomy of LA-HNSCC, 
careful planning of light delivery and optical fiber 
insertion is necessary. The objective of this work was to 
test the feasibility of using COMSOL Multiphysics® 
Software to simulate light propagation during I-PDT of 
LA-HNSCC.  

Results: 

Conclusions: The light propagation during I-PDT 
can be simulated using COMSOL and can be 
displayed in both two-dimensional and three-
dimensional plots. Our developed finite element 
model has the potential to aid in the pretreatment 
planning and real-time monitoring of I-PDT of LA-
HNSCC. 
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Figure 2. (A) Mesh created in COMSOL, (B) resulting fluence 
(J/cm²) throughout the tumor volume for a treatment time of 250 
seconds for tumor 2, and (C) dose volume histogram representing 
the percent of the tumor volume that will receive a prescribed light 
dose as a function of treatment time (sec). 

Computational Methods: In COMSOL, a diffusion 
model was set up to compute the photon distribution 
throughout three-dimensional (3-D) geometries, 
representative of LA-HNSCC, when exposed to laser 
light. Our finite element model for computing the light 
dose was described previously in Oakley et al [3]. In this 
approach, the 3-D, time-dependent diffusion equation is 
derived from the equation for radiative transfer, and is 
given by: 
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Φ x, y, z, t  is the photon flux (Photons/m²/sec),  αn is the 
optical diffusion coefficient (m²/sec) of tissue n, 𝜇𝑎

𝑛 and 
𝜇𝑠

𝑛 are the linear absorption and scattering coefficients 
(1/m) of tissue n, g is the optical anisotropy factor, and 
𝑐𝑛 is the speed of light in tissue n. The source laser light 
is represented by a flux of diffused photons emitted from 
the inside surface of the catheter, and is given by 
(Neumann boundary conditions): 
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Plaser is the laser irradiance (W/m²), co is the speed of 
light in a vacuum (3 x 108  m/sec), hp is the Planck’s 
constant (6.626 x 10−34J/second), and vl is the laser light 
frequency (1/sec). 
In our previously published work, we were able to 
optimize the mesh size of the LA-HNSCC models [3]. 
This allowed us to reduce the simulation computation 
time to within 5 minutes. 
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