Simplified CFD Modeling of Air Pollution Reduction by Means of Greenery in Urban Canyons

Stefano Lazzari^{*1}, Katia Perini¹, Eugenia Rossi di Schio², and Enrica Roccotiello³ 1. University of Genova, Dept. of Architectural Sciences, Stradone S. Agostino 37, Genova, Italy I-16123; 2. University of Bologna, Dept. of Industrial Engineering, Viale Risorgimento 2, Bologna, Italy I-40136; 3. University of Genova, Dept. of Earth Sciences, Environment and Life, Corso Europa 26, Genova, Italy I-16132.

Н

Introduction: a simplified model to evaluate the effect of greenery on the possible reduction of pollution in a straight urban canyon (Figure 1) is presented. Greenery is modeled as a Darcian porous medium that absorbs pollutant (diluted specie) according to the reaction:

 $R = -a |\mathbf{u}|^{\alpha_1} c^{\alpha_2} \qquad \frac{mol}{m^3 s}$

Pollutant source: cars

Pollutant type: CO₂:

Preliminary results:

Table 1. Effect of greenery for U_{wind}=0.5 ms/s

	pollutant concentration [mol/m ³]		
$U_{wind} = 0.5 \text{ m/s}$	clear canyon	green facade	green hedge
plane at 0.3 m from the ground	207.65	184.86	189.87
plane at 1 m from the ground	5.379	0.256	0.272
outlet section of the canyon	14.568	14.472	15.765
overall volume of the canyon	7.107	6.435	6.868

Figure 1. Sketch of the urban canyon.

Computational Method: The governing equations, which are present in the CFD module, are the following ones. $\nabla \cdot \mathbf{u} = 0$

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot \left\{-p\mathbf{I} + \mu \left[\nabla \mathbf{u} + \left(\nabla \mathbf{u}\right)^T\right]\right\} + \mathbf{F}$$

$$\frac{\rho}{\varepsilon} \left[\left(\mathbf{u} \cdot \nabla \right) \frac{\mathbf{u}}{\varepsilon} \right] = \nabla \cdot \left\{ -p\mathbf{I} + \frac{\mu}{\varepsilon} \left[\nabla \mathbf{u} + \left(\nabla \mathbf{u} \right)^T \right] - \frac{2\mu}{3\varepsilon} \left(\nabla \cdot \mathbf{u} \right) \mathbf{I} \right\}$$

$$-\left(\frac{\mu}{\kappa} + \beta \left|\mathbf{u}\right| + \frac{Q}{\varepsilon^2}\right)\mathbf{u} + \mathbf{F}$$

 $\nabla \cdot (-D \nabla c) + \mathbf{u} \cdot \nabla c = R$

Qualitative sketches of the two considered greenery dispositions are shown below (Figure 2).

Table 2. Effect of greenery for U_{wind}=3 ms/s

	pollutant concentration [mol/m ³]		
$U_{wind} = 3 m/s$	clear canyon	green facade	green hedge
plane at 0.3 m from the ground	34.127	27.471	26.862
plane at 1 m from the ground	0.791	0.00489	0.00448
outlet section of the canyon	2.537	1.666	1.860
overall volume of the canyon	1.244	0.832	0.931

Conclusions: The proposed model has been designed to be a flexible tool to predict greenery effect. Indeed, by changing the values of the porosity ε and permeability κ of the porous medium and by tailoring the reduction reaction R (values of a, α_1 , α_2), it allows different plant species to be modelled. Planned experimental tests in an innovative chamber will allow the quantification of the "trap-effects" by plants and will help fine-tuning the model.

Figure 2. Green façade (left) and green hedge (right)

Excerpt from the Proceedings of the 2016 COMSOL Conference in Munich