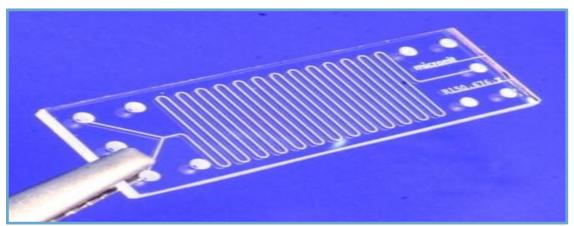
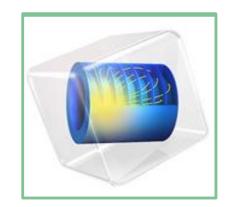


Simulation of a Pressure Driven Droplet Generator

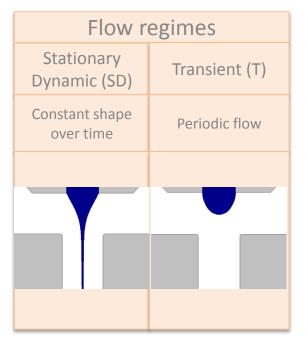
V. MAMET, B. DUPONT, P. NAMY¹
¹SIMTEC, France
15th October 2015

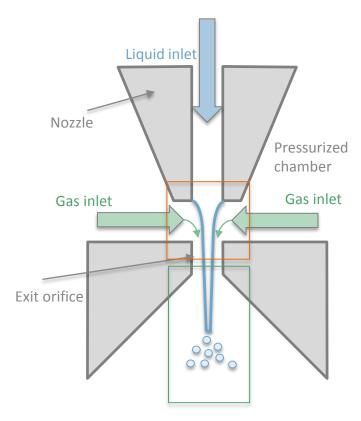


Outline


- 1) Overview of microfluidics
- 2) Presentation of the process
- 3) Model
- 4) Results
- 5) Outlook

1) Overview of microfluidics



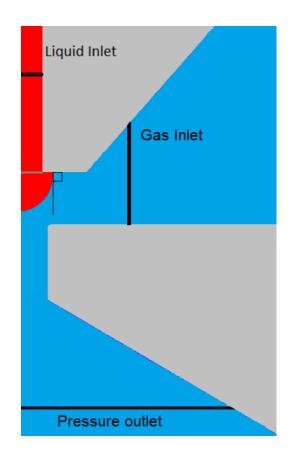


2) Presentation of the process

☐ Flow regimes & modes

Modes		
Dripping	Jetting	
Production at the exit orifice	Thread break up	
•		

3) Model


Assumptions

- Rotational symmetry → 2D-axi consideration
- Neglecting the influence of temperature
- No chemical reactions

☐ Fluids & interfacial properties :

Property	Liquid (DP)	Gas (CP)
Density (kg/m³)	957	1.225
Viscosity (Pa.s)	1.8e-3	1.8e-5

Surface tension (N/m)	35.6e-3
Contact angle (rad)	$\pi/2$

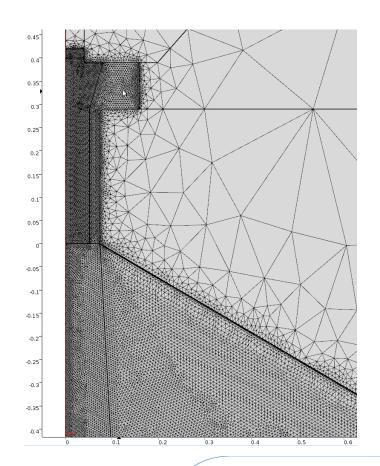
3) Model

- ☐ Governing equations
- ✓ Liquid & gas flows governed by the Navier-Stokes equations for incompressible flows

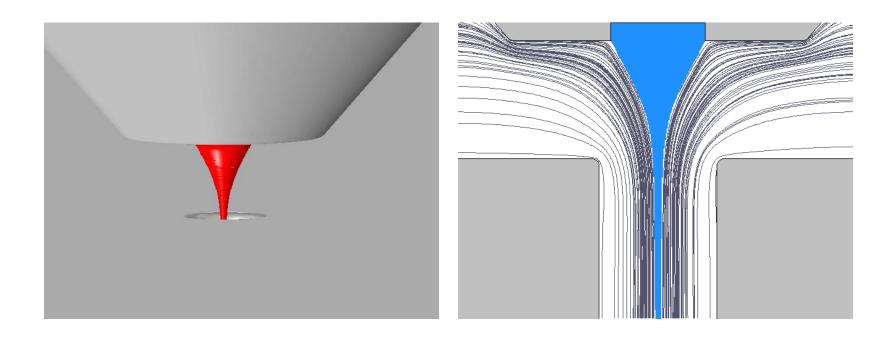
$$\nabla \cdot \mathbf{u} = 0$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [-pI + \mu(\nabla \mathbf{u} + \nabla \mathbf{u}^T)] + \rho \mathbf{g} + \mathbf{F}_{st}$$

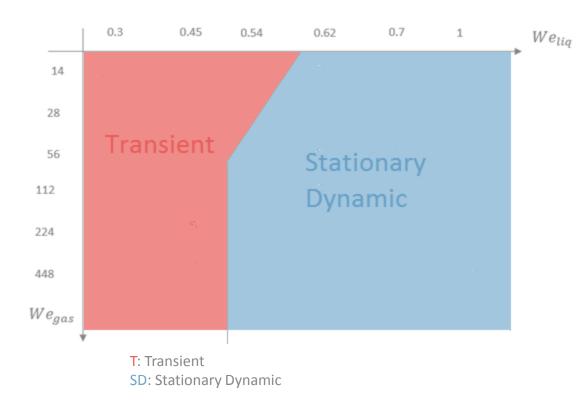
- ✓ Interface motion of the multiphase flow: simulated with COMSOL module Two-Phase Flow, Phase Field approach.
- → Resolution of the Cahn-Hilliard equation


$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \nabla \cdot \frac{3\epsilon\sigma}{2\sqrt{2}} \chi \nabla [-\nabla \cdot \epsilon^2 \nabla \phi + (\phi^2 - 1)\phi]$$

3) Model


☐ Numerical details

- o Range of liquid flow rate: 1 to 10 ml/h
- o Range of gas pressure : 0.02 to 1 bar
- Time setting: [0,0.01s] with timestep of 1e-4s
- BDF for the time-dependent study
- Newton-Raphson algorithm to linearize
- PARDISO as direct solver
- Calibration studies on mobility & phase field parameter


4) Results

Stationary Dynamic

4)Results

- → Flow regimes as a function of the Weber number
 - Liquid Weber :

$$We_{liq} = \frac{\rho u^2 R_{in}}{\sigma} = \frac{kinetic\ energy}{surface\ tension}$$

Gas Weber

$$We_{gas} = \frac{2P_{gas}R_{out}}{\sigma} = \frac{pressure}{surface\ tension}$$

- → Good agreement with experimental data from Si *et al*.
- → Experimental validation in progress

5) Outlook

- ☐ Further work :
- Simulation of droplets modes
- Study on the effect of geometry
- Optimization aiming the smaller monodispersion
- Phenomena underlying the spray: atomization, deposit, etc.

Thank you for your attention!

Any questions?

Contact: victorien.mamet@dbv-technologies.com

