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Abstract: The work proposed in this article 

deals with the consideration of 3D geometric 

effects to evaluate the iron losses in magnetic 

devices used in power electronics. To carry out 

this work, we rely upon two existing models of 

iron losses calculation currently used in power 

electronics we couple with in a finite elements 

magnetic fields calculation code, COMSOL 

Multiphysics. The non-linear behavior of 

magnetic material is treated. 
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1. Introduction 
Designing magnetic components requires the 

well-known of electromagnetic losses they lead 

to. It is the losses due to current circulation 

inside windings (“copper losses”) and due to the 

temporal variation of magnetic field inside the 

cores (“iron losses”). However, the right 

evaluation of those losses is quite complex 

because they depend on frequency, amplitude, 

waveform, geometry and materials’ nature.  

The work proposed in this paper deals with 

the consideration of 3D geometric effects and 

also the consideration of non-linearity to 

evaluate the iron losses in magnetic devices used 

in power electronics. To carry out this work, we 

rely upon two existing models of iron losses per 

unit volume calculation currently used in power 

electronics [2-9]. We coupled these two models 

with finite elements magnetic fields calculation 

software, COMSOL Multiphysics. Indeed, as 

they are volumetric models, instead of applying 

them at the macroscopic scale we can apply them 

at the element scale and so improve the iron 

losses estimation. Moreover, in order to imitate 

at best the 3D geometric effects, we must take 

into consideration the non-linear behavior of 

magnetic field otherwise we could have really 

high values in corners which could falsify our 

calculation.   

The two models we use and the coupling 

procedure with COMSOL Multiphysics are 

presented on paragraph 2. Then, in paragraph 3, 

the calculation of volumetric (under unsaturated 

sinusoidal conditions) loss density is validated.  

In paragraph 4, the necessity of taking into 

account non-linearity and so saturation 

phenomenon is explained. Finally, in paragraph 

5, the method is applied to the 3D Power 

Inductor of COMSOL model library. 

 

2. Presentation of the Method 

In first approach, under unsaturated 

sinusoidal waveform, iron losses in magnetic 

materials are estimated thanks to the following 

formula, called “Steinmetz Equation” (SE): 
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Where      ̅̅ ̅̅ ̅̅  is the time-average power loss 

per unit volume,  ̂ is the peak flux density 

amplitude and f is the frequency of the sinusoidal 

excitation. The parameters k, α and β are 

determined thanks to power loss per unit of 

volume curves provide by manufacturers. Even if 

it restrain to the unsaturated sinusoidal 

excitation, this formula is interesting because 

those parameters are based on general 

specifications and easy to reach because they are 

given by the manufacturer. 

However, in power electronics, the magnetic 

components do not only work under sinusoidal 

excitation but they can be brought to work under 

different kind of waveform. They are generally 

supplied by rectangular voltage with variable 

duty cycle. The magnetic flux density could so 

be triangular with a nonzero mean value and the 

previous Steinmetz formula cannot be applied 

correctly. 

In the case of any waveform excitation, an 

interesting approach has been proposed by [5]. It 

consists in using an improved formula of the 

previous one and it is called “improved 

Generalized Steinmetz Equation” (iGSE): 
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Where      ̅̅ ̅̅ ̅̅  is the time-average power loss 

per unit volume, 
  

  
 is the temporal derivative 

of  B(t), ∆B is the ripple of magnetic flux 



 

density, T is the period of B(t) and    a 

coefficient reliant on the B(t) waveform : 

 

                
 

       ∫ |    |       
  
 

                (3) 

 

It should be noted that the formula (2) 

requires the knowledge of      and could be 

used with any periodic waveform excitation with 

zero mean value. Moreover, it uses the same k, α 

and β parameters than for (SE). 

However, a limit in the use of those formulas 

(1) & (2) appears when they are applied in a 

macroscopic way by considering an average flux 

density in magnetic cores. If it is commonly 

admitted that the magnetic flux density is 

homogeneous in a torus (low section and high 

radius torus), the cores use in power electronics 

could have more complex shapes. Thus, the 

magnetic flux density present high gradients that 

locally modify the iron losses and so the 

resultant global value [1]. In order to precisely 

take into account this inhomogeneous 

distribution of magnetic flux density in a 

complex shape component, the idea is to use 

results from element finite simulation method. 

So, instead of applying formulas (1) & (2) at a 

macroscopic scale, we apply them at an element 

scale to improve the estimation accuracy of iron 

losses. Furthermore, in order to take account of 

geometric effects in the corners of the magnetic 

core, which are the source of local saturation and 

field's redistribution, it is also necessary to model 

the non-linearity of the magnetic material. This 

non-linearity is implemented inside COMSOL 

Multiphysics material properties by defining the 

initial magnetization curve of the magnetic 

material. 

Finally, a post-processing is realized from 

the results obtained thanks to COMSOL 

Multiphyisics software. Formula (1) is quite 

simple to use inasmuch as it requires just only 

one magnetostatic simulation to get the 

magnitude  ̂ of magnetic flux density in each 

element. Besides, formula (2) requires the 

knowledge of temporal magnetic flux density 

     over a whole period  . There is two way to 

get     . One way it to make several 

magnetostatic simulations (quasi-steady state 

assumption) or another way is to directly make a 

time-dependent simulation through COMSOL 

Multiphysics. Figure 1 shows the pattern of the 

method. 

 

Figure 1. Process of the implemented method using 

COMSOL Multiphysics with MATLAB Livelink. 

 

It should be noted that we need to calculate 

the magnetic flux density for each element. To 

do this, the use of mphinterp function could be 

avid in term of computation time. Another way 

to get the same information is to make the 

assumption that the flux density is homogeneous 

at an element scale (with the exception that mesh 

quality is good). So we can simply evaluate it by 

doing a geometric mean of flux densities 

calculated at each element peaks (Figure 2). A 

compromise has to be found between a good 

mesh quality and a reasonable computational 

time. 

Figure 2. Alternative calculation of centroid 

magnetic flux density inside an element using 

geometric mean. 

 

3. Preliminary validation of the formulas 

- k, α, and β parameters  
In order to validate the formulas we will use 

in the method, we verified that under sinusoidal 

excitation, the two models (SE) and (iGSE) 

provide the same results. To do that, we identify 

the values of the parameters k, α, and β by fitting 



 

the datasheet curve with least squares method. 

The parameters given in the Table 1 correspond 

with 3F3 material from Ferroxcube [10] and are 

valid for different ranges of frequencies and 

magnetic flux density peaks at a temperature of 

100°C. 

 
        – Bmax [T]       

25 – 0.300 1.055e-3 1.544 2.704 

100 – 0.250 1.045e-3 1.504 2.698 

200 – 0.200 1.040e-3 1.489 2.578 

400 – 0.150 1.037e-3 1.480 2.418 

700 – 0.080 1.036e-3 1.483 2.256 

Table 1. Values of k, α, and β obtained for 3F3 

Ferroxcube material at 100°C. 

 

Then we can use the formulas and validate 

the right agreement between formulas. The 

results are shown in Figure 3. 

 

Figure 3. Preliminary validation of theoretical model 

for unsaturated sinusoidal supplying- 3F3 ferrite at 

100°C. 

 

As we mentioned earlier, iGSE formula 

requires the knowledge of temporal magnetic 

flux density B(t) over a period. So it is reliant on 

the number of points used to discretize it. That 

numerical error has been quantified by 

calculating relative error between SE and iGSE 

in sinusoidal excitation as a function of the 

number of point used for the discretization. To 

have a good precision (relative error lower than 

0.1%) B(t) should have at least 30 points. This 

consideration is important and determines either 

the number of simulation you have to make in 

quasi-steady state assumption either the size of 

step time in time-dependent simulation. 

 

4. 3D Geometric Effect and Magnetic 

Non-linearity  
We present here the necessity of taking into 

account non-linearity of magnetic materials. 

Usually, the design of magnetic component is 

made in such a way that the magnetic flux 

density does not saturate in its average path. Yet, 

due to the dispersal and depending on the kind of 

core geometry, an amount of the whole volume 

could reach saturation level. Figure 4 illustrates 

this remark.  

 

 
Figure 4. Magnetic flux density spreading inside the 

iron core. 

 

Thus, to fully take advantage of this 3D 

calculation method, it is important to take into 

account magnetic non-linearity. Indeed, this non-

linearity locally modify B(t) curves and 

eventually could lead to saturation which lead to 

a redistribution of flux density in the nearby 

elements. So, those modifications work on the 

iron losses calculation (when using iGSE 

formula). Figure 5 illustrates this remark by 

considering two different elements inside the 

core. 

 

 
Figure 5. Left - B(t) for an element located in high 

magnetic flux area and Right - in a low one. 

 

5. Application and Results 

In order to illustrate the interest of the 

method by taking into account 3D geometric 

effect, Figure 6 presents the spreading, both of 

magnetic flux density norm and of iron losses. 

We can clearly see local aspects. 

 



 

 

Figure 6. Example of volumetric distribution of the 

magnetic flux density and losses inside the iron core. 

 

Then, we compare the results we get from 

classical approaches which uses an average 

magnetic flux density inside the core with the 

ones we get with our method. Two different 

current excitation conditions are studied: 

sinusoidal and triangular one.  

The results we present here are obtained by 

discretizing the current wave and making for 

each discretized points a magneto static 

simulation. In order to validate this quasi-steady 

state assumption, time-dependent simulations 

has been realized and results of both simulations 

were consistent.  

 

 
Figure 7. B(t) for each element. Left – 100 kHz 

sinusoidal current supplying. Right - 100 kHz 

triangular current supplying. 

 

Then we compute iron losses in each element 

with those curves. Finally, we compute global 

losses in the entire iron core. The results are 

given in the Table 2. 
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Table 2. Results of global losses from classical 

approaches (red) and our new approach (green) 

 

 Formulas (SE) and (iGSE) are computed using 

analytical results (Ampère’s Law) for the magnetic 

flux density level by taking into consideration a 

unique magnetic state. Formulas (SE1+SE2) and 

(iGSE1+iGSE2) are also computed using analytical 

results (Ampère’s Law + Gauss’s Law) but this time 

by taking into consideration two areas and so two 

magnetic states. The large difference with those two 

results reveals that for such a geometry where the 

magnetic flux density is highly inhomogeneous, it is 

necessary to discretize the geometry. Thus, formulas 

(3DSE) and (3DiGSE) are much more precise because 

they take into account a number of magnetic states 

equal to the number of elements.  

 

6. Conclusion and Perspectives 
The new method presented here allows 

taking into account with a good accuracy, 3D 

geometric effects in iron losses calculation, in 

magnetic components for power electronics. As 

we have seen, those effects have a manifest 

contribution. Having a good knowledge of 

electromagnetic losses is primordial to thermally 

design a magnetic component and this method 

aims to improve their conception.  

With the aim of completing the validation of 

this method, it is essential to compare numerical 

results with experimental ones. A campaign of 

measures will be realized. 

As we noticed previously, the method can be 

modified to use a new improved formula which 

considers DC bias condition and relaxation 

phenomenon, for instance (i²GSE), [7]:  
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However, this improvement is much more 

restrictive because it needs new parameters 

which are not identifiable with datasheet.  

As those losses depend on temperature and 

are heat sources, the following step is to couple 

this method with a thermal simulation to obtain 

an entire electro-magneto-thermal design. 
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