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Abstract

Introduction:

Designing magnetic components requires the well-known of electromagnetic losses they lead to.
However, the right evaluation of those losses is quite complex because they depend on
frequency, amplitude, waveform, geometry and materials' nature. The work proposed in this
paper deals with the consideration of 3D geometric effects and material non-linearity to evaluate
iron losses in magnetic devices used in power electronics. To carry out this work, we rely upon
two existing models of iron losses per unit volume calculation currently used in power
electronics (Figure 1). They are volumetric models, but instead of applying them at a
macroscopic scale, we have applied them at an element scale to improve the estimation accuracy
of iron losses. Furthermore, in order to take account of geometric effects in the corners of the
magnetic core, which are the source of local saturation and field's redistribution, it is also
necessary to model the non-linearity of the magnetic material. This non-linearity is defined from
the initial magnetization curve of the magnetic material.

Use of COMSOL Multiphysics®:

The study was realized on the existing COMSOL Multiphysics® model called "Power
Inductor". In order to calculate the magnetic field volumetric distribution inside the iron core, we
have used the AC/DC module with Magnetic Field (MF) physics. Three materials have been
used, air, copper for the wire, 3F3 Ferroxcube ferrite material for the core. To take into account
the non linearity of the ferrite material, we have defined the B(H) curve. Once the volumetric
distribution is obtained, thanks to the LiveLink™ for MATLAB®, we have recovered the result in
MATLAB® to calculate losses using (SE) and (iGSE) formulas for each element (Figure 2).
Note that for the iGSE formula, we need temporal information. So we have repeated the previous
steps to obtain the temporal waveform (quasi static assumption).

Results:

The results we present have been obtained by performing our calculation method for two
different classical current waveforms in power electronic, a sinusoidal one and a triangular one.
The results show well the necessity of taking into account 3D geometric effects, especially on
this core geometries where the cross section is not constant along the magnetic path (Figure 3).
We can see areas where losses are high, according to the 3D magnetic field distribution. Indeed,
we getup to 500% deviation between the classical losses calculation and by considering those
effects (Figure 4). Finally, we can also notice on the temporal curves the impact of non-linearity
on their shapes.



Conclusion:

The new method presented here allows taking into account with a good accuracy, 3D geometric
effects inironlosses calculation, in magnetic components for power electronics. As we have
seen, those effects have a manifest contribution. Having a good knowledge of electromagnetic
losses is primordial to thermally design a magnetic component and this method aims to improve
their conception.
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Figures used in the abstract

Power Loss as a function of peak flux density with frequency as parameter
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Figure 1: Preliminary validation of theoretical model for unsaturated sinusoidal supplying- 3F3
ferrite at 100°C
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Figure 3: Example of volumetric distribution of the magnetic flux density and losses inside the
iron core
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Figure 4: IIB(t)ll for each element (left) and Results of global losses from classical approach
and our new approach (right) for two current excitation waveforms : sinusoidal (up) — triangular
(down) — triangular (down)al (up) — triangular (down)



