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Abstract: Morphogenesis is a tightly regulated 
process that has been studied for decades. We are 
developing data-based and image-basd mechanistic 
models for a range of developmental processes with 
a view to integrate the available knowledge and to 
better understand the underlying regulatory logic. 
In our previous papers on simulating organogenesis 
with COMSOL (German et al COMSOL Conf 
Procedings 2011; Menshykau and Iber, COMSOL 
Conf Proceedings 2012) we discussed methods to 
efficiently solve such models on static and growing 
domains. A further challenge in modeling 
morphogenesis is the parameterization of such 
models. Here we discuss COMSOL-based methods 
for parameter optimization. These routines can be 
used to determine parameter sets, for which the 
simulations reproduce experimental data and 
constraints. Such data is often image based, but 
may also come from classical biochemical or 
genetic experiments. 
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1. Introduction
Increasing computational power and 
advancement of computational methods now 
allow us to formulate and solve detailed 
computational models for gene regulatory 
networks that control complex biological 
processes in morphogenesis and organogenesis. 
The reliability of developmental processes 
suggests that core processes are deterministic, 
and accordingly deterministic models for pattern 
formation have been studied for decades in 
developmental biology. 

We formulate the models as systems of reaction-
diffusion equations of the form:

 

where  denotes the velocity field of the 
domain and Ri the reactions, which couple the 
equations for the different species Xi. Di is the 
diffusion constant and  the Nabla operator. 
The velocity field might be either imposed, or 
could be made dependent on the local 
concentration of proteins, which may affect local 
cell behavior, e.g. the cell division rate or cell 
adhesion and motility.  A wide range of reaction 
laws can be used.1 We have previously shown 
how to implement and to efficiently solve such 
models in COMSOL on growing and static 
multilayer domains.2,3 The computational models 
can help to integrate the available knowledge, to 
test the consistency of current models, and to 
generate new hypotheses. Previously, we 
correctly predicted novel genetic regulatory 
interactions in the limb bud,4 suggested 
mechanisms for the control of digit formation,5 
bone development,6 and for branch point 
selection in the lung7 and kidney.8 

One major challenge is the parameterization of 
computational models.9 Parameters that are 
required for the formulation of models include, 
but are not limited to protein production and 
degradation rates, diffusion constants, and rate 
constants for protein-protein interactions. These 
parameter values can, in principle, be measured 
in vitro and sometimes also in vivo. However, 
this is rarely the case and the establishment of 
measurement methods for a certain system can 
take years and can typically not be easily 
transferred to another system. Therefore, direct 
measurement of all required parameter values is 
not feasible.  

Experiments in developmental biology typically 
deliver information about the organ shape and 
protein expression patterns at various stages in a 
WT and mutant system. Here we explore the 
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possibility to use these data to quantitatively test, 
parameterize and discretize computational 
models. First we consider a simple Turing type 
model formulated on an idealized 2D domain. 
Next we discuss examples from image based 
modeling of branching morphogenesis.  
 
2. Conventions & Computational Details 
Here we use bold italic to refer to COMSOL 
fields and nodes e.g. Coefficient form PDE, 
Diffusion Coefficient refers to the field where 
the diffusion coefficient needs to be specified. 
Models discussed in this manuscript were 
implemented through the Coefficient form PDE 
interface and solved in COMSOL 4.3a and 4.3b 
as previously described in ref.3 

 
3. Use of COMSOL Multiphysics 
3.1 A Test Case – Simple Turing Type Model 
We have previously proposed that Turing 
type models10,11 based on receptor-ligand 
signaling govern lung and kidney branching 
morphogenesis7,8. The simplest form of such 
a model for the receptor ligand-interactions 
can be represented by Schnakenberg-type 
reaction kinetics:  

     (1) 
where a, b, γ, D are positive parameters and 
D>>1.  
V describes the distribution of ligand and is 
defined in both layers (Figure 1a); however the 
ligand production rate is zero in the epithelium 
(b=0). U describes the distribution of receptor 
and is defined only in the epithelium (inner layer 
in Figure 1b). U2V represents the concentration 
of the ligand-receptor complex (Figure 1c). 
 
Turing type models generate patterns 
spontaneously from homogenous, noisy initial 
conditions; the solution of eq 1 is depicted in 
Figure 1. Depending on the parameter values 
different patterns emerge (compare the left and 
right columns in Figure 1).  
 
To test the optimization procedure we choose to 
optimize the distribution of the ligand-receptor 
complex, U2V, along the epithelium-
mesenchyme border (Figure 1c). We first 
construct the cost function as L2 distance 
between the calculated distribution U2V for a 

given parameter set and U0
2V0 calculated earlier 

at a=0.1, b=0.4 and γ=300. 

.     (2) 
U0

2V0 was specified using Functions-> 
Interpolation: fc(x), where fc(x) is the tabulated 
solution U0

2V0. The deviation Δ2 was specified as 
Boundary Probe, type Integral: (u1^2*v1-
fc(x))^2. 
 
We first tested the gradient-based optimization 
solver SNOPT:12,13 (Optimization-> Method: 
SNOPT). Optimality tolerance was set to 10-3; 
Optimization Solver->Gradient Method was set 
to Numeric. The other settings were left at their 
default values. Next we randomly sampled 100 
points, which were set as initial value for the 
optimization solver (Optimization->Control 
Variable and Parameters-> Initial Value). 
Points were sampled from a log uniform 
distribution in the range log(a): -2..0, log(b): -
1.4..0.6 and log(γ): 1.4..3.4. To automatically run 
the optimization algorithm starting from various 
initial values we ran COMSOL via LiveLink for 
MATLAB. 

U̇ = �U + �(a� U + U2V )

V̇ = D�+ �(b� U2V )

Figure 1. Test Case: a Turing type model on a two-
layer domain. Steady state distribution of a) the 
variable V (ligand) and b) the variables U (receptor). 
c) Distribution of U2V along the border of the 
epithelium and mesenchyme. D=100, a=0.3, b=0.5. 
Panels with and without apostrophe where calculated 
for γ=300 and γ=500 accordingly. 
 



 

Initial values of parameters were set in 
COMSOL with the function param.set(); values 
of parameters after optimization where retrieved 
from COMSOL with function mphglobal(). The 
distribution of variables U and V where retrieved 
from COMSOL with the function mphevelal() 
and the number of peaks with findpeaks(). Next, 
we tested the gradient free optimization method 
Coordinate Search: (Optimization-> Method: 
Coordinate Search).14 In this case Initial values 
of parameters were set with the function 
model.study('std1').feature('opt').set('initval', 
values_str). 
 
Figure 2 a, c) shows that the optimization solver 
SNOPT correctly recovers the distribution of 
U2V only in a confined region of the parameter 
space, around γ=300. Figure 3a depicts the value 
of the cost function, Δ, in the parameter space. 

We notice that the parameter region, where a 
minimal value of Δ is observed, is similar to the 
region of the parameter space where the 
optimization solvers converge (Figure 2). Figure 
3b shows the number of U2V peaks in the Turing 
pattern for the different parameter values. This 
region of the parameter space is again similar to 
that depicted in Figure 2 a. It thus seems that the 
optimization solver correctly recovers parameter 
values only if the pattern that is calculated for the 
initial parameter set has already the correct 
number of U2V peaks. However, a more detailed 
analysis as presented in Table 1, shows that the 
optimization solver SNOPT can recover the 
correct value of the parameters also if the initial 
pattern has two or one peaks or lies outside of 
the Turing range. We next tested the gradient-
free optimization solver Coordinate Search 
(Figure 2 b, d)) and found that, similar to 

Figure 2. Convergence of the Optimization Solvers. Optimization solver a and c) SNOPT, b, d) Coordinate 
Search. Points and crosses depict initial values for the optimization solver, which lead to the convergence and failure 
of the optimization solver, accordingly. Color code shows value of the objective function at the end of the 
optimization. Panels c) and d) depict projection of 3D parametric space on γ-b plane. 



 

SNOPT, correct values of the initial parameters 
can be recovered only from a confined region of 
the parameter space. However, in the case of the 
Coordinate Search algorithm the region is 
confined around b=0.4. 
 
Coordinate Search Method and SNOPT both 
experience a similar drawback: the parameter 
values can be recovered only from a confined 
region of the parameter space. To overcome this 
drawback we suggest the following strategy for 
parameter optimization of Turing-type models: 
1) uniformly sample the parameter space of 
interest, 2) choose points with the minimum 

value of cost function, and 3) use these points as 
a starting condition for the local optimization 
solver e.g. SNOPT or Coordinate Search. 
  
3.2 Application: Kidney Branching 
Morphogenesis 
A number of alternative mechanisms have been 
proposed to govern branching morphogenesis.15 
However, to date no consistent test of alternative 
models has been carried out. Here we deploy an 
image-based modeling approach16, 17 to allow the 
testing of such models. 
 

Figure 3. Landscape of parameter space of the Turing-type model (eq 1). a) Deviation, Δ (eq 2) and b) number 
of peaks in U2V distribution. 

Table 1. Convergence of the Optimization Solver SNOPT. Initial (a0, b0, γ0) and 
optimized parameter values (aopt, bopt,  γopt). Parameters used to generate data for fit are 
a=0.1, b=0.4, γ=300. n0 refers to the number of peaks in the U2V distribution. 
a0 b0 γ 0 n0 Δ0 aopt bopt γ opt nopt Δ opt 
0.068 0.297 317.4 2 2.122 0.123 0.393 317.4 2 3E-4 
0.219 1.481 381.7 0 46.21 0.188 0.370 381.7 2 0.091 
0.131 0.388 329.4 2 0.051 0.138 0.389 329.4 2 0.032 
0.566 0.072 308.5 0 7.588 0.100 0.400 299.9 2 8E-5 
0.236 1.539 509.1 0 67.28 0.205 0.331 509.2 2 0.235 
0.467 0.576 327.8 0 6.404 0.136 0.389 327.8 2 0.002 
0.314 0.398 217.7 1.5 7.444 0.010 0.454 217.7 2 0.482 
0.656 0.298 373.6 2 4.000 0.099 0.400 299.9 2 8E-5 
0.027 0.215 268.0 0 8.092 0.100 0.407 300.3 2 4E-4 
0.096 0.259 232.9 0 8.040 0.025 0.433 232.9 2 0.257 
0.067 0.636 544.8 0 11.89 0.099 0.400 299.6 2 0.002 
0.412 0.236 224.0 1 8.362 0.029 0.438 226.7 2 0.369 
0.062 1.837 392.0 0 76.78 0.099 0.400 299.7 2 2E-4 
0.177 0.045 321.0 0 7.578 0.128 0.392 321.0 2 0.023 
0.619 0.269 303.4 1.5 6.784 0.105 0.400 303.6 2 0.005 
0.793 0.048 229.3 0 7.750 0.020 0.433 230.2 2 0.281 
0.010 0.087 320.3 0 320.4 0.123 0.392 320.4 2 0.023 
 



 

We proposed a mechanism for branch point 
selection during lung7 and kidney8 branching 
morphogenesis. The mechanism is based on 
receptor-ligand interactions, which lead to a 
Turing type instability and domain patterning. 
To test whether this mechanism can correctly 
predict growth areas during branching 
morphogenesis we obtained 2D time lapse 
movies of the embryonic kidneys in vitro and 
extracted domain boundary in Matlab (Figure 
4a).17 We also calculated displacement fields 
between consecutive stages (Figure 4b). The 
displacement field represents the position-
dependent direction and magnitude of the tissue 
growth.16,17 Various algorithms can be applied to 
calculate displacement fields, e.g. landmark-free 
algorithms based on minimal or normal 
distances, or the landmark-based Buckstein 
algorithm.18 Figure 4b depicts the displacement 
field calculated with an algorithm based on the 
normal distance between surfaces. 
 
To build a computational model we imported the 
domain in the shape of the embryonic kidney 
explants (Geometry -> Interpolation Curve- > 
Import to Table) and the displacement field into 
COMSOL (Global -> Function- > Interpolation 
-> File). The displacement field was next used in 
COMSOL to specify the cost function in the 
form analogous to that given by eq 2. To 
estimate parameter values we used the approach 
outlined in section 3.1 A Test Case – Simple 

Turing Type Model: first we sampled a thousand 
points (Figure 4c) from a log normal distribution, 
and we next performed a local optimization 
using points in the parameter space with the 
minimum value of the cost function as a starting 
point. The signalling model (eq 1) formulated on 
the two-layer domain yielded a better fit for 
parameter values inside the Turing space (Figure 
4c, black dots) than outside the Turing space 
(Figure 4c, red dots).15,17 Figure 4d shows that 
the Turing type model adequately reproduces the 
growth areas observed in the embryonic kidneys. 
Similarly 3D imaging data can be used to solve, 
parameterize and discretize models.16 
 

4. Discussion 
Here we presented an approach for model 
parameterization based on a random sampling of 
the parameter space followed, by a local 
optimization. 
 
The discussed models were solved on a static 2D 
domain, which allows solving them fast. In 
particular, the solution time for the model 
depicted in Figure 4d is several seconds; the 
solution time for a similar 3D image-based 
model is several minutes.16 However, 
organogenesis is a highly dynamic process, 
involving dramatic changes in the shape of 
organs. Therefore, models should be formulated 
on a growing and deforming domain. 

Figure 4. Image-based Modelling of Kidney Branching Morphogenesis. a) A snapshot from the time lapse movie; 
red line indicates the extracted border of the kidney epithelium. Experimental data is courtesy of Odysse Michos; b) 
enlarged parts of the kidney explant and the calculated displacement field (blue), green and red lines shows earlier and 
later frames in the time lapse movie, accordingly; c) deviation (eq 2) for the points in the Turing space (black), in 
between (green), and out of the Turing space (red); d) distribution of U2V on the epithelium-mesenchyme border 
shown by the color code (blue - low concentration, red - high concentration), arrows indicate growth field. 



 

Preliminary tests show that the solution of such 
models requires hours of computational time.17 
Therefore, extensive parameter screening 
becomes prohibitive. The development of more 
efficient and well-parallelized algorithms for 
both model parameterization and solution on a 
deforming domain is required for further 
advancement of computational organogenesis. 
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