
Multigrid Implementation in COMSOL Multiphysics - Comparison of
Theory and Practice

Wolfgang Joppich, University of Applied Sciences Bonn-Rhein-Sieg, Grantham Allee 20,
D-53757 Sankt Augustin, wolfgang.joppich@h-brs.de

Abstract

Multigrid methods (MG) be-
long to the fastest solvers for par-
tial di�erential equations. The key
for this is an appropriate composi-
tion of the algorithmic components.
The multigrid solver implemented
in COMSOL Multiphysics is ana-
lyzed with respect to components
and with respect to its numerical
properties.

Keywords: linear system of equations,
solver, multigrid method

1 Introduction

The simulation of many problems in engi-
neering and natural sciences requires the nu-
merical solution of partial di�erential equa-
tions. Usually, the �nally occurring linear
systems of equations are very large and de-
mand for e�cient algorithms, ideally with
a linear dependence on the problem size.
Multigrid methods in principle possess this
property together with a convergence rate
which is bounded away from one by a con-
stant which is independent from the mesh
size. To show these features the algorith-
mic components of MG, such as smoothing,
creation of grid hierarchy, and grid transfer
operators, have to be composed in an ap-
propriate and problem-dependent way. The
theory of MG o�ers concrete recommenda-
tions how to choose the algorithmic com-
ponents in order to obtain optimal results
[1, 3, 6, 7]. This implies that MG is not
a �xed solver but rather a solution method
with speci�c components adapted to the un-
derlying problem.

COMSOL Multiphysics [2] o�ers geomet-
ric MG for solving linear systems of equa-
tions iteratively. To estimate the quality of
the implementation the features of COM-
SOL are used to compose di�erent MG al-
gorithms. They are applied to selected
model problems in order to determine em-
pirical convergence rates, which are com-
pared both with theoretically predicted con-
vergence rates [4] and with empirical conver-
gence rates from a MG matlab implementa-
tion [5].

2 The Multigrid Method

The neat combination of the two basic prin-
ciples smoothing and coarse grid correction
leads to the iteratively cycling MG method.
An elementary understanding of these prin-
ciples will be provided by analyzing the Pois-
son equation on the unit square with Dirich-
let boundary conditions.

2.1 Smoothing

The problem is ��u = f on the unit square

 � RI 2 with Dirichlet boundary conditions
u = g on the boundary @
. The domain 

is covered by a mesh with quadratic cells:
h = hx = hy = 1

N
, where N typically is a

power of two. Thus the discrete computa-
tional domain including its boundary is

h = f(xi; yj) j xi = ih; yj = jh with 0 � i; j � Ng.

Grid functions de�ned on 
h are denomi-
nated by the subscript h: uh; fh; gh. Eval-
uating the grid function uh at a grid point
x = (xi; yj) = (ih; jh) is written as ui;j .

The Laplacian � = @2

@x2
+ @2

@y2
is approxi-

mated by central di�erences. Collecting the

®



discrete equations results in a linear sys-
tem of equations ��huh = fh. Due to
the discretization formula the matrices are
sparse. To solve the systems, the use of
iterative schemes is natural, especially for
large N . The use of Jacobi- or Gauss-Seidel
methods, including their weighted variants,
is self-evident but shows, that an initially
good convergence becomes bad, very soon.

The functions 'h
l;m(x; y) = sin l�x � sinm�y

build a basis of the space of grid func-
tions of 
h with boundary values equal to
zero and they are eigenfunctions of the dis-
crete Laplacian �h. It is easy to show that
they are also eigenfunctions of the Jacobi-
iteration operator PJ , which allows an easy
calculation of the eigenvalues. The spectral
radius of the Jacobi method for the discrete
Poisson equation is given by �(PJ) = cos�h
which explains the convergence behavior:
the smaller h the worse the convergence.
Such h-dependent convergence rates can be
seen for other iterative methods, too.

A straightforward way to construct a coarser
2h = H-mesh from the previously described

h is to omit every second line and row
(standard coarsening). For standard coars-
ening frequencies with wave numbers 1 �
l;m < N

2 can be seen on the coarse grid
[5]. They are called low-frequent with re-
spect to the �ne grid. On the other hand,
those with wave numbers max(l;m) � N

2 are
called high-frequent.

The analysis corresponding to the above
classi�cation of high and low frequent shows:
high frequent components are damped fast,
low frequent components are damped slowly.

Conclusion 2.1 This behavior, which is
characteristic for many iterative methods, is
the smoothing property, the �rst basic prin-
ciple of MG methods.

2.2 Coarse Grid Correction

Still having in mind ��huh = fh includ-
ing Dirichlet boundary conditions, we switch
to the notation Lhuh = fh. The unknown
solution uh is decomposed into the current

approximation w
(n)
h after n iterations and

into the unknown corresponding error uh =

w
(n)
h + ~e

(n)
h or ~e

(n)
h = uh � w

(n)
h . Knowing

the error to an approximation, the solution
could be determined. To obtain an equa-
tion for the error, the operator Lh is applied

to ~e
(n)
h , and we get the residual equation

Lh~e
(n)
h = r

(n)
h :

Adding ~e
(n)
h = L�1h r

(n)
h to w

(n)
h would deliver

the solution uh. When not solving the resid-
ual equation exactly, but approximately by

a residual correction ê
(n)
h , then w

(n)
h + ê

(n)
h

will not be equal to uh, but it should im-

prove w
(n)
h such that w

(n+1)
h = w

(n)
h + ê

(n)
h

is an improved approximation to uh. This
is the well-known idea of defect correction
methods. The essential idea is to calcu-
late the approximate solution to the resid-
ual equation not on the h-mesh, but on a
H = 2h-mesh. Therefore an appropriate
restriction operator IHh transforms the �ne

grid function r
(n)
h to the coarse grid func-

tion r
(n)
H = IHh r

(n)
h . LH is the same oper-

ator like Lh but h replaced by H. Then

LHe
(n)
H = r

(n)
H is solved: e

(n)
H = L�1H r

(n)
H =

L�1H (IHh r
(n)
h ) = L�1H (IHh fh � IHh Lhw

(n)
h ). An

interpolation operator IhH from 
H to 
h

transfers the coarse grid solution to the �ne

grid ê
(n)
h = IhHe

(n)
H . The interpolated quan-

tity improves w
(n)
h to w

(n+1)
h = w

(n)
h + ê

(n)
h .

Conclusion 2.2 These steps are called
coarse grid correction. The coarse grid cor-
rection is the second basic principle of MG
methods.



2.3 The Correction Scheme

Coarse grid correction makes only sense if
the �ne grid function to be transferred no
longer contains high frequent components.
The �nal idea now is to use the smooth-
ing property for eliminating high frequent
components of the error in combination with
coarse grid correction for a fast computa-
tion of the residual correction. As a re-
sult the two grid correction scheme to de-

termine w
(n+1)
h from w

(n)
h can be formu-

lated. S�hw
(n�1)
h denotes the application of

� smoothing steps to w
(n�1)
h .

Algorithm 2.1 Correction Scheme (CS)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(1) pre smoothing �w
(n)
h := S�1h w

(n�1)
h

(2) residual calculation r
(n)
h := fh � Lh �w

(n)
h

(3) residual restriction r
(n)
H := IHh r

(n)
h

(4) exactly solving the

coarse grid problem LH~e
(n)
H = r

(n)
H

(5) correction transfer ~e
(n)
h := IhH~e

(n)
H

(6) correction ~w
(n)
h := �w

(n)
h + ~e

(n)
h

(7) post smoothing w
(n+1)
h = S�2h ~w

(n)
h

The pre smoothing step eliminates high fre-
quent error components. The smooth er-
ror can be approximated well on the coarse
grid and the coarse grid problem is well de-
�ned. Its solution is interpolated to the
�ne grid. Interpolation introduces high fre-
quent modes, which are eliminated again by
smoothing - post smoothing. Rekursively
applying the two grid correction scheme to
step (4) of Algorithm 2.1 creates the multi-
grid method, marching through a hierarchy
of grids from the �nest grid to the coarsest
grid where the corresponding discrete prob-
lem has to be solved exactly. The number of

 executions of the two grid scheme to solve
step (4) creates the di�erent types of cycles:

 = 1 produces the V-cycle and 
 = 2 deliv-

ers the W-cycle. The so-called F-Cycle is a
compromise between V- and W-cycle.

3 From Theory to Practice

Due to the diversity of components it is le-
gitimate to ask whether MG components in-

uence MG convergence. The next ques-
tion concerns the search for optimal compo-
nents: can MG convergence using speci�ed
components be predicted? The most power-
ful method for such predictions is the local
Fourier analysis (LFA) [4]. The LFA pro-
vides theoretical convergence rates, which
are denoted in the following by �lfa. In [5] a
matlab environment (Gra�cal User Interface
and MG solver) is described which includes
a collection of components for model prob-
lems. The corresponding empirical conver-
gence rates are denominated by �gui.

3.1 The FEM Package COMSOL

Multiphysics

COMSOL Multiphysics [2] o�ers techniques
for modelling and simulating a large set
of problems from engineering and science.
COMSOL includes state of the art direct
and iterative solver methods. The geo-
metric MG method is among the iterative
and pre-conditioning algorithms. Facing the
discussed variety of MG components one
should be aware that a commercial software
product can not o�er all desired or possi-
ble components a MG developer would like
to have. Robustness, maintainability, and
compatibility with the general design of data
structure and software architecture are only
a few reasons which require pragmatic de-
cisions with respect to selection and imple-
mentation of MG components. The e�ect of
such decisions is of interest. Can COMSOL-
MG-solver reach the convergence behavior
which is expected for typical model prob-
lems or have concessions to be made?



COMSOL Version 4.3b is used in the sense
of a black box solver. All given data (con-
vergence rate, time) are from information of
the software (log information). To deter-
mine the time per cycle, the solution time
for one cycle is subtracted from the solu-
tion time using n + 1 cycles and this time
di�erence is divided by n, thus eliminating
the setup phase for the problem. The linear
residual norm reached after n+1 cycles is di-
vided by the linear residual norm using only
one cycle. The n-th root of this quotient is
the empirical asymptotic convergence rate
�comsol.

3.2 Practical Experiments

All given times refer to an Intel Core
i7 Extreme 980X (Gulftown) processor at
3.33 GHz with 6 cores using turboboosting
and hyperthreading, and 24 Gigabyte main
memory. The experiments are designed in a
way to analyse the general behavior of the
geometric MG solver. The cycle types V, F,
and W are compared with respect to con-
vergence and time requirements. Because
cycles with two pre-smoothing steps and one
post-smoothing step turned out to be very
e�cient in practice, exclusively this cycle
type is used. The tolerance for the accu-
racy of the iterative solver is always set to
10�10.

Experiment 3.1 The �rst experiment
solves the Poisson equation on the unit
square with Dirichlet boundary conditions.
The �rst grid hierarchy is generated from
a mapped mesh (quadratic cells) with
4.000.000 elements on the �nest level l9 by
standard coarsening to a coarsest level l1
with 256 elements. The problem to be solved
on l9 has 16.008.001 degrees of freedom.

Table 1: Solving the Poisson problem on a
mapped mesh for 16.008.001 degrees of free-
dom on totally 9 Levels (9L).

solver time no. of time per %comsol mem.
[s] cycles cycle (GB)

V-9L SOR 175 10 2.8 0.046 17.0
F-9L SOR 181 9 3.9 0.040 15.6
W-9L SOR 184 9 4.3 0.040 15.7
V-9L SSOR 195 10 3.7 0.053 15.9
F-9L SSOR 197 9 5.6 0.048 15.0
W-9L SSOR 203 9 6.3 0.048 15.0
V-9L Vanka 196 10 4.8 0.053 18.0
F-9L Vanka 205 9 6.1 0.048 18.0
W-9L Vanka 210 9 6.9 0.048 18.0

MUMPS 756 tol. n. r. 34.1
Pardiso 909 tol. n. r. 40.0
Spooles 909 {

V-, W-, and F-cycles with two pre-
smoothing and one post-smoothing steps in
combination with the most natural smoother
in this problem class, SOR (! = 1:0) are ap-
plied �rst. The desired accuracy is reached
within 9 to 10 iterations. The total solution
time ranges from 175 to 184 seconds. The
time per cycle re
ects the numerical com-
plexity of the cycle types: the V-cycle is the
cheapest one, the W-cycle is the most expen-
sive one. Well known is the slightly worse
convergence rate of the V-cycle compared to
that of the other cycle types. F- and W-
cycle show the same convergence behavior,
although the F-cycle is cheaper than the W-
cycle. The average empirical convergence
rate is �comsol = 0:046 for V- and �comsol =
0:040 for both F- and W-cycle. Compared
to the usually conservative prediction of the
Fourier analysis with �lfa = 0:119 for W-
and �lfa = 0:131 for V-cycle this is an excel-
lent result, especially when comparing with
the matlab implementation applying a V-
cycle with Gauss-Seidel smoothing, FW on
a 1025 � 1025-mesh, and standard coarsen-
ing for totally ten MG level: �gui = 0:084.

Due to the o�ered collection of point
smoothers SSOR is the next natural choice.
SSOR realizes a forward scanning during
the �rst step and a backward scanning dur-
ing the second step. The invested numer-
ical work per SSOR step therefore is twice
that for a single SOR step. The increased
smoothing e�ort does not pay out, although
the time per cycle is increased by almost �fty



per cent.

Another successfully used smoother in the
MG context is the Vanka smoother. This
method simultaneously solves a small local
system for all degrees of freedom belonging
to a particular element. This type of block
relaxation can be recommended especially for
Navier Stokes equations. The selection of
this smoother for the Poisson problem re-
produces the convergence speed of the SSOR
smoother. Solving the small local systems in-
creases both the time per cycle and the mem-
ory requirement for this type of smoothing.

Just to be mentioned: the direct solver
of COMSOL (MUMPS and Pardiso multi-
threaded) required 756 and 909 seconds, re-
spectively. The relative tolerance was not
reached. The direct solvers requested more
than twice the memory compared to the most
e�cient multigrid variant. 2

Conclusion 3.1 The quality of the
smoother in
uences convergence speed. The
V-cycle using Gauss-Seidel (SOR) creates
the fastest MG method for the Poisson model
problem.

The Jacobi method plays an important role
for the theoretical analysis and development
of the MG method. COMSOL also o�ers
this type of smoother. The question is,
which properties this solver shows in prac-
tice. Because the previous experiment has
been performed on a mapped mesh, which
is not typical for FEM applications, the fol-
lowing experiment uses a hierarchy of free
triangular meshes.

Experiment 3.2 The grid hierarchy starts
from the coarsest mesh with 268 elements
and totally seven, eight or nine levels with
l8 = 4:390:912 and l9 = 17:563:648 elements
are used. These meshes lead to 8.786.945
and 35.137.537 degrees of freedom, on l8 and
l9, respectively.

Selecting the smoothing scheme to Jacobi
with default parameters, especially relax-
ation factor ! = 1:0, the MG method for
the Poisson problem on 7 levels comes to an
astonishing result: divergence.

Table 2: Solving the Poisson equation with
MG using the Jacobi smoother on a free tri-
angular mesh

solver time no. of time per %comsol mem.
[s] cycles cycle (GB)

W-7L Jac ! = 1:0 div.
V-8L Jac ! = 1:0 84 29 1.1 0.402 8.7
V-8L Jac ! = 0:8 71 17 1.1 0.194 8.6
F-8L Jac ! = 0:8 77 17 1.4 0.192 8.6
W-8L Jac ! = 0:8 79 17 1.6 0.192 8.7

V-9L Jac ! = 0:8 596 17 8.4 0.193 30.7
V-9L SOR 450 10 3.0 0.051 29.3

This is in complete agreement with theory,
which states for the Poisson problem that Ja-
cobi with relaxation factor ! = 1:0 has bad
smoothing properties. The smoothing analy-
sis for MG proves, that Jacobi with ! = 0:8
has optimal smoothing properties [1, 3, 6, 7].
Nevertheless, the smooting is worse than
that for Gauss-Seidel (SOR), which is theo-
retically expected and practically observed.
The problem on l8 is solved up to the required
accuracy within 17 cycles (all types). Again,
F- and W-cycle reach the same �comsol =
0:192, whereas the V-cycle converges slightly
worse. The time per cycle is smaller than
2 seconds, with a total time below 80 sec-
onds in general. The V-cycle with Jacobi
smoothing (! = 0:8) on l9 requires 17 it-
erations, solves within 596 seconds, shows
�comsol = 0:193, and needs 8.4 seconds per
cycle. This problem on l9 could not be solved
by a direct solver. The convergence rates on
l8 and l9 are almost identical. 2

Conclusion 3.2 The previous experiments
show that smoothing is a key component for
MG. The use of default parameters can be
counter-productive, because smoothing prop-
erties can be destroyed. The results con-
cerning V-, F-, and W-cycle show that the
COMSOL MG implementation behaves as
one would expect from theory.



The following experiment will show that
knowledge about MG theory helps �nding
the limits of MG even for a model problem.

Experiment 3.3 The di�erential equation
Lu = "@

2u
@x2

+ @2u
@y2

with " = 0:01 is considered
now. The similarity to the Poisson equa-
tion implies a similar choice of components.
A hierarchy of totally eight free triangular
meshes is created by regular re�nement from
l1 = 268 elements to l8 = 4:390:912 elements
with 8.786.945 degrees of freedom (see Ex-
periment 3.2).

Table 3: The anisotropic model problem on
a free triangular mesh of 8.786.945 degrees
of freedom

solver time no. of time per %comsol mem.
[s] cycles cycle (GB)

V-8L SOR 391 298 1.14 0.915 8.4
F-8L SOR 502 297 1.51 0.915 8.4
W-8L SOR 544 297 1.65 0.915 8.4

V-8L SSOR 407 198 1.79 0.877 8.3
V-8L Vanka 450 198 2.00 0.877 9.7

V-8L SORline 441 68 5.08 0.692 10.3

MUMPS 192 tol. n. r. 16.5
Pardiso 101 tol. n. r. 20.0
Spooles 487 tol. n. r. 24.2

The results in Table 3 show a dramatically
increased time to solve. The large number
of necessary cycles is caused by the bad con-
vergence rate of only % = 0:915 for SOR-
smoother. Cycles with SSOR- and Vanka-
smoother are not signi�cantly faster.
The matlab program with Gauss-Seidel
smoothing comes to a �gui = 0:939 and lo-
cal Fourier analysis predicts �lfa = 0:942,
con�rming the observations and indicating
a principal di�culty. Nevertheless, using
an appropriate smoother for this anisotropic
problem, the Matlab program reaches �gui =
0:025.
The explanation requires insight into MG
theory. Due to the " = 0:01 the coupling of
unknowns into y-direction is stronger than
the coupling into x-direction. Therefore
the error into the direction of weak cou-
pling is smoothed less than the error into

y-direction. To compensate this, there are
essentially two strategies. The �rst one
tries to capture the anisotropy by a mod-
i�ed coarsening (semi-coarsening into the
direction of strong coupling). The second
modi�es the smoother such that all strongly
coupled variables (y-direction) are solved to-
gether (block relaxation). On a standard
FD-mesh this is a column. If the columns
are scanned zebra-like the smoothing is even
improved and MG convergence reaches the
above mentioned �gui = 0:025. Either ap-
proach is not easy to realize in a �nite
element context. COMSOL o�ers a so-
called SOR-line smoother which automat-
ically searches for anisotropies either in
the mesh or in the system matrix. After
some tuning of parameters of the SOR-line
smoother a �comsol = 0:692 could be reached,
and only 68 cycles were necessary to reach
the standard accuracy. The big disadvan-
tage: the time per cycle is 5.08 seconds and
the time to solve is 441 seconds. This is not
really convincing, but has to be expected for
MG with strong anisotropies. 2

The experiment for the anisotropic Poisson
equation reveals the di�culty of MG for
such types of problems. While MG does
not solve faster than 391 seconds, the direct
solver behave completely di�erent. MUMPS
�nishes within 192 seconds, but the toler-
ance of 10�10 was not reached. Pardiso
with nested dissection multithreaded, for-
ward and backward substitution also mul-
tithreaded �nished within 101 seconds. The
memory requirement for the direct solvers
again is about twice that of the MG solver.

Experiment 3.4 COMSOL provides a
model �le to simulate a free-convection prob-
lem where a thermos holding hot co�ee dis-
sipates thermal energy. The default solver
is a direct one. In a �rst step the number of
degrees of freedom is increased to 1.975.146.
Re�ning this mesh twice, leads to problems



of 5.084.465 and 20.323.281 degrees of free-
dom, respectively. This series of problems is
solved with MG, Pardiso, and MUMPS. The
corresponding results are shown in Table 4.

Table 4: Solving a sequence of problems
derived from the V3.5a COMSOL model li-
brary (heat transfer, thermos laminar 
ow)

d.o.f. solver total time mem.
characteristics (seconds) (GB)

1.975.146 MG-V(2,1)-6L SOR 50 7.4
direct Pardiso 83 11.1
direct MUMPS 157 9.9
direct Spooles 254 8.6

5.084.465 MG-V(2,1)-7L SOR 128 8.3
direct Pardiso 220 19.2
direct MUMPS 410 14.8
direct Spooles 857 20.6

20.323.281 MG-V(2,1)-8L SOR 695 25.5
direct Pardiso cancelled -
direct MUMPS cancelled 43.8
direct Spooles omitted -

Already in case of the moderate size prob-
lems a standard MG solver with SOR
smoother beats the direct solver both with
respect to computing time and with respect
to memory requirement. The large problem
could not be solved using the direct solver.
MUMPS has been cancelled after 27 min-
utes within the �rst Newton step (MG re-
quired 4 to solve) and indicating the request
for 43.8 Gbyte of virtual memory. Basically,
the direct solver failed due to their memory
requirements. 2

4 Conclusion

The essential component for an e�cient
MG algorithm is the smoothing opera-
tor. In COMSOL, the standard meth-
ods are available. Variants with di�erent
types of scanning the equations are real-
ized, too. Collective methods of Vanka
type and block-relaxation methods (SOR-
line) are also available. Additional iterative
methods can be used in the context of MG
(CG with ILU) for smoothing. The grid hi-
erarchy can be created by either coarsening
from �ne to coarse or by re�ning from coarse

to �ne. This is possible on triangular and
on mapped meshes. The most relevant cy-
cle types are implemented.

Exploiting all these possibilities, COM-
SOL allows the composition of time-,
convergence-, and memory-e�cient MG al-
gorithms both for model problems and con-
crete aplications which work in the range
predicted by theory and known by experi-
ence.

References

[1] Brandt, A.: Multigrid Techniques: 1984
Guide With Applications to Fluid Dy-
namics, GMD-Studie No. 85, GMD,
Sankt Augustin, 1984.

[2] COMSOL Multiphysics Reference
Manual, COMSOL 4.3b, May 2013,
c
COPYRIGHT 1998-2013 by COM-
SOL AB.

[3] Hackbusch, W.: Multi-Grid Meth-
ods and Applications, Springer-Verlag,
Berlin, 1985.

[4] Wienands, R. and Joppich, W.: Numer-
ical Insights into Local Fourier Analysis
for Multigrid Methods, CRC Press, Boca
Raton, 2004.

[5] Joppich, W.: Grundlagen der Mehr-
gittermethode, Shaker Verlag, Aachen,
2011.

[6] St�uben, K., Trottenberg, U.: Multi-
grid Methods: Fundamental Algorithms,
Model Problem Analysis and Applica-
tions, Lecture Notes in Mathematics,
960, pp. 1-176, Springer-Verlag, Heidel-
berg, 1982.

[7] Trottenberg, U., Oosterlee, C., and
Sch�uller, A.: Multigrid, Academic Press,
San Diego, 2001.




