#### COMSOL CONFERENCE ROTTERDAM2013

Comsol Simulations of Cracking in Point Loaded Masonry with Randomly Distributed Material Properties

dr.ir. A.T. Vermeltfoort & dr.ir.A.W.M. van Schijndel



Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

## Calcium silicate, a type of artificial stone, when loaded in compression fails in tension.

- •Building with Calcium silicate Elements
- •Tensile properties
- •The problem: centre strip to support floors
- Two Strategies used to simulate behaviour: SLA & CSS Step function
  Random assigned material properties

Sequential linear elastic modeling & Continuos stress strain model









## Building with Calcium Silicate Elements



Structural Masonry



# Building with calcium silicate elements 2







PAGE 3

# Wall-floor connection / mortar joint











## Wall-floor system



**CSt** 

Technische Universiteit **Eindhoven** University of Technology

5

#### **Rotation stiffness floor-wall connection**



## **Size of Specimen**



### Test & Simulation details







PAGE 8

## Splitting



#### **Splitting block: failure in tension**









Modulus of Elasticity Young's modulus ~ 10,000 Mpa (1MPa / 0.1mm/m)

**PAGE 10** 

Technische Universiteit

University of Technology

### **Tension properties: 4 Stress vs strain diagrams**



University of Technology

#### **Tension properties** E-value vs Strain



**CSt** 

Technische Universiteit

University of Technology

**Eindhoven** 

31-10-2013

### Random properties (initial E-values)



**PAGE 13** 

TUe Technische Universiteit Eindhoven University of Technology

31-10-2013

#### **SLA: Sequential linear elastic Analysis**



works in steps !!

#### places with bigh and low E-values





#### Load - displacement



e

Structural Masonry

31-10-2013

**PAGE 15** 

#### **SS: Continuous Stress strain model**

#### Exys = 1e7+(PercE(6000\*solid.ep1))\*Emod(x,y)



**PAGE 16** 

TU/e Technische Universiteit Eindhoven University of Technology 74 Surface: 1e7+(PercE(6000'solid.ep1))\*Emod(x,y)[P



20 Surface: 167+(PercE(6000\*solid.ep1))\*Emod(x,y)[Pa



[27] Surface: 1e7+(Perce(6000#solid.ep1))#Emod(x,y)[Pa



30 Surface: 1e7+(PercE(6000\*solid.ep1))\*Emod(x,y)[Pa



17 Surface: 187+(Ferce(6000#8000,861))#Emod(%y)[Fa



(5 Surface: 167+(Perce(6000\*solid.ep1))\*Emod(x,y)[Pa



#### **Effect of Strip position on strength**

Effect of strip position on ultimate contact stress.

f'w = -0.1035 es + 25.226

es: strip eccentricity

#### (R2 = 0.88; 11 tests; t = 200 mm)





**PAGE 23** 

This paper shows the possibility to randomly assign strength and E-values to parts of a specimen and to simulate crack patterns.

The continuous stress strain model worked and showed promising results.

#### SS method easier than SLA

The direct relation between strain and E-values made work easier compared to work with sequential linear analysis.





#### Thanks



Video of SS simulation on http://www.youtube.com/watch?v=A9gJivBOiNQ Video of SLA simulation on http://www.youtube.com/watch?v=bdz0GM1IzjE



Structural Masonry

**PAGE 25**