Extending Engineering Simulations to Biological Scientists: Food Safety and **Quality Prediction Using COMSOL** Multiphysics[®] LiveLink[™] for **Excel**[®] **Alexander Warning**

Ashim K. Datta October 10, 2013

Simulation enhances education through:

- Active learning
 - Student can actively dial product, process and microbiological parameters and do "what if" scenarios
- Reinforcing basic concepts
 - How do microbiological kinetics depend on temperature (i.e., sterilization happens faster at higher temperature)
- Exploring more complex and multi-disciplinary situations
 - Multiphysics
 - Realistic geometries

Improving problem-solving skills

When sterilization temperature drops, time need to be extended

*Geometries are freely available from GradCad and GoogleSketchup

Course Goal (Example Module)

What bio

scientists

are good at

What engineers are good at

> Heat/ Mass Transfer

But what bio scientists might not be Microbiology/ Chemical Kinetics

But what engineers might not be Together they improve at

> Food Sterilization Process

Basic overview of user experience

COMSOL Model

Filename:

Enter the Geometry and Time Information Here

Parameter	Expr	Description
Time_Tot	720	Total Process Time, Seconds
Time_Rec	180	Time Step Intervals, Seconds
Prod_R	0.1	Product Radius, m
Prod_H	0.1	Product Height, m
Elem	5	Element Quality, 1 is course, higher is finer

C:\Users\adw88.CORNELL\Dropbox\Food Safety Software\Can.mph

Initial Conditions

kđ

Name	Expr		Description
T10		10	Initial temperature, C
phi		0.9	porosity

Initial Product Comp	Get					
Select Food Group:	sea food Comp					
Select Food:	ABALONE,MXD SP,CKD,FRIED					
Name	Expr	Description				
wt_Water	60.1					
wt_Prot	19.63					
wt_Fat	6.78					
wt_Ash	1.77					
wt_Carb	11.05					
wt_Fiber	0					
Total % Weight	99.33					
Microbial Growth Ki	netics	Update M	icrobe Growth			
Microbe number 1:	Staphylococcus	and Inactiv	vation Kinetics			
Growth Model Type:	First Order					
Name	Expr	Description				
Rate1	0.0073*T -	Growth rate, log(CFU/n	ul)/s			
Lag1	7.34*T)*(T>=8)*(T<17	lag time, s				
N01	3	log(CFU/ml)				
Microbe number 2:	Staphylococcus					
Growth Model Type:	Sigmoidal					
Name	Expr	Description				
Rate2	/(1+exp(-(0.554*T^2-					
Lag2	0					
N02	3	log(CFU/ml)				
Microbe number 3:	E. coli O157					
Growth Model Type:	First Order					
Name	Expr	Description				
Rate3	(0)*N3/(3600*2.3026)					
Lag3	0					
N03	3	log(CFU/ml)				
Generation/Degradat	ion of Chemicals		Update			
Chemical:	MeIQx		Chemical			
Formation or Degradation	Formation	_				
Name	Expr	Description				
C0	0	-				
Cmax	5.266					
kg	0.0004*T+0.0378					

0

Problem Schematic

Domain Volume, m^3	0.003141593		
Sample Density, kg/m^3	802.4276877	Show Schematic	
Sample Mass, kg	2.520900929	Show Schematic	

Visual Basic Button

Boundary Conditions

Name	Expr	Description
h_top	10	Conv. heat transfer coef on top, W m^-2 K^-1
T_top	20	Top can temperature, C
h_right	10	Conv. heat transfer coef on right, W m^-2 K^-1
T_right	20	Right can temperature, C
h_bottom	10	Conv. heat transfer coef on bottom, W m^-2 K^-1
T_bottom	20	Bottom can temperature, C

Inactivation Kinetics

Microbe number 1:	Staphylococcus	
Inactivation (Yes/No)	No	
Name	Expr	Description
D1	0	
z1	0	
Trefl	0	
Microbe number 2:	Staphylococcus	
Inactivation (Yes/No)	No	
Name	Expr	Description
D2	0	
z2	0	
Tref2	0	
Microbe number 3:	E. coli O157	
Inactivation (Yes/No)	No	
Name	Expr	Description
D3	0	
z3	0	
Tref3	0	

General idea of how software works

Functionalities of software

- Built in composition database
- Built in kinetic database for microbes and chemicals
- Meshing is automated
- Students avoid equation and solver inputs
- Post-Processing is set-up ahead of time
- No programming (i.e. Matlab)

Properties and Meshing

Name	Expression		*			
rho_s	tot/(wt_Water/rho_w+wt_Ash/rho_ash+wt_Carb/rho_carb+wt_Fat/rho					
cp_s	(wt_Water*cp_w+wt_Ash*cp_ash+wt_Carb*cp_carb+wt_Fat*cp_fat+wt					
k_s_parallel	tot/(wt_Water/k_w+wt_Ash/k_ash+wt_Carb/k_carb+wt_Fat/k_fat+wt					
k_s_perp	(wt_Water*k_w+wt_Ash*k_ash+wt_Carb*k_carb+wt_Fat*k_fat+wt_Fibe					
k_s	0.5*(k_s_parallel+k_s_perp)					
cp_protein	2008.2+1.2089*T20013129*T2*T2					
rho_w	997.18+.0031439*T20037574*T2*T2	Effective				
rho_ash	2423.828063*T2	properties				
cp_carb	1548.8+1.9625*T20059399*T2*T2	automatically				
cp_fat	1984.2+1.4373*T20048008*T2*T2	automatically				
k_fibre	0.18331+.0012497*T20000031683*T2*T2	calculated in				
k_w	0.57109+.001762*T20000067036*T2*T2	COMSOL				
k_fat	0.18071+.0027604*T200000017749*T2*T2	from				
k_carb	0.20141+.0013874*T20000043312*T2*T2	irom				
cp_w	4176.20909*T2+.0054731*T2*T2	composition	-			

Properties and Meshing, ctd.

						17. C			
169	Staphylococcus		1 Dairy		3	8	17	0.001°T^2 -0.012°T - 0.0395	43.37 - 2.32*T
170					0	17	30	0.001°T^2 -0.012°T - 0.0395	8.9-0.286°T
171					0	30	35	0.595	8.9-0.286°T
172			2 Baby food	S	3	8	17	0.001°T^2 -0.012°T - 0.0395	43.37 - 2.32*T
173					0	17	30	0.001°T^2 -0.012°T - 0.0395	8.9-0.286°T
174					0	30	35	0.595	8.9-0.286°T
175	Crah		3 fats and o	ils	3	8	17	0.001°T^2 -0.012°T - 0.0395	43.37 - 2.32*T
176	UTab				0	17	30	0.001°T^2 -0.012°T - 0.0395	8.9-0.286°T
177	remultions	🔪			0	30	35	0.595	8.9-0.286°T
;	a= Components	1	Name	Expre	ession				
-	a= Kinetics	I II I	Rate1	(0+(0).0007*1	r^2 -0.0073	*T - 0.0182)*(T>=8)*(T<17)+(0.000	7*T^2 -0.0
a= Initial Composition Lag1 0+(134.88 - 7.34*T)*(T					7.34*T)*(T>	=8)*(T<17)+(20.09 - 0.582*T)*(T>=	:17)*(T<30	
-	Initial Values		N01	3					
-	= Microbe1_Grow								
-	= Microbe2_Grow								
188	ranges				0	30	35	0.46	20.09 - 0.582°T
189	_		9 vegetable	2	3	8	17	0.801 T^2 -0.012 T - 0.0395	43.37 - 2.32°T
190					0	17	30	0.001 1 2-0.012 T - 0.0395	8.9-0.286°T
191					U	30	35	0.585	8.9-0.286 T
192			10 nuts and	seeds					
193			11 beverage	S				2	
194			12 sea food		3	8	17	0.0007"T*2 -0.0073"T - 0.0182	134.88 - 7.34 T
195					0	17	30	0.0007"T"2 -0.0073"T - 0.0182	20.09-0.582°T
196					0	30	35	0.46	20.09-0.582°T

Properties and Meshing, ctd.

Automatic meshing with logical statements

Number of elements:

 $(Prod_H > = 1)*ceil(Prod_H * Elem/.05) + (Prod_H < 1)*(Prod_H > = .05)*ceil(Prod_H * Elem/.005) + (Prod_H < .05)*(Prod_H > = .01)*ceil(Prod_H > .01)*ceil(Prod_$

Future Plans

- New modules
- Implementing, testing and evaluating in a number of courses at various universities, covering varying background of students and faculty
- Possibly extend to STEM curricula where simulation is not routine

Questions?