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Abstract: Polymer gels belong to the realm of 
soft active materials as they are capable of 
responding to a non-mechanical stimulus – the 
permeation of a solvent – with a mechanical 
action – a volume change, thanks to the coupling 
between different physics. This mechanism of 
coupling can be exploited in a wide range of 
applications, including biomedical devices, 
making crucial the understanding of the 
dynamics of these systems. To this aim, we 
develop a nonlinear multiphysics theory and 
solve numerically the resulting model using the 
finite element method.  
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1. Introduction 
 

Polymer gels are soft elastic materials 
consisting of an elastic network of cross-linked 
polymers and a fluid, generally a liquid solvent, 
which permeates the elastic medium, inducing 
large volume deformations (swelling/shrinking). 
Some species of gels are also able to respond to 
non-mechanical stimuli as temperature or pH 
changes, or light activation, and vary accordingly 
their swelling degree. 

The growing interest in soft materials is 
strongly related to their analogies with living 
tissues, making them suitable for biomedical 
applications. Specifically, gels are commonly 
employed as drug release devices and in tissue 
engineering. A part from the biomedical 
applications, gels can be found in the food 
industry, in coating and printing processes, in 
microfluidic devices and in cosmetics [1]. 

Mathematical models of gels involve at least 
two coupled physics: the mechanics of the 
polymer network and the migration of the 
solvent. In the following sections, we describe a 
nonlinear multiphysics theory coupling diffusion 
and large deformations [2]. In particular, the 
solvent-polymer mixture is seen as a single 
homogenized continuum allowing for the mass 
transport of the solvent. The theoretical model is 
then implemented in COMSOL Multiphysics 
and benchmarked on two representative 
problems. 

2. Governing Equations 
 

To establish the notation, we denote with ℬ, 
a region of the three-dimensional Euclidean 
space ℰ, the reference configuration of the 
material body and with 𝜕ℬ its boundary; 𝒎 is 
the unit normal to 𝜕ℬ. Let us also introduce the 
motion 𝑓, a smooth map that assigns to each 
material point 𝑋 ∈ ℬ and time 𝜏 ∈ ℐ a place 
𝑥 = 𝑓 𝑋, 𝜏 ∈ ℰ; we denote with 𝑭 its gradient, 
with 𝐽 = det𝑭 the Jacobian determinant and 
with 𝑭∗ = 𝐽𝑭!𝑻 the cofactor of 𝑭. The 
displacement 𝒖 of 𝑋 is defined as 𝒖 𝑋, 𝜏 =
  𝑓 𝑋, 𝜏 − 𝑋; its gradient is related to the 
deformation gradient by 𝑭 = 𝑰 + 𝛻𝒖. We call 
actual configuration the region of space 
ℬ! = 𝑓(ℬ, 𝜏) occupied by the body at time 𝜏. 

We can think of the actual swelling process 
from the dry state, that we denote with ℬ!, to the 
current configuration as made of two subsequent 
processes: a free swelling from ℬ! to ℬ and a 
further swelling from ℬ to ℬ!. This way, that is 
by choosing as reference configuration a swollen 
state distinct from ℬ!, we circumvent the 
numerical problems due to the fact that the 
Flory-Rehner free energy [1] that is commonly 
employed to model swelling phenomena in 
polymer gels is singular at the dry state, i.e. 
when the solvent concentration is zero. In 
particular, since ℬ is reached from ℬ! through a 
free swelling process, i.e. the system is allowed 
to swell without forces or mechanical constraints 
and attain chemical equilibrium, it has the same 
shape as ℬ! but is scaled by a uniform stretch 𝜆!, 
so that the volume ratio between the swollen and 
the dry configuration is 𝐽! = 𝜆!! . This quantity 
depends on the amount of solvent 𝑐! present 
within the gel, measured per unit volume in ℬ: 
indeed, it is usually assumed that both the 
polymer and the solvent are incompressible, so 
that a local volume change is directly related to a 
change in solvent content. We can express this 
fact in the form of a volume constraint 
connecting 𝐽! and 𝑐!: 𝐽! = 1 + 𝛺𝑐!", being 𝛺 is 
the solvent molar volume and 𝑐!" = 𝐽!𝑐! the 
solvent concentration measured per unit dry 
volume (in ℬ!). Thus, 𝑐! = (𝐽! − 1)/𝛺𝐽!.  



 

An analogous constraint holds for the volume 
ratio between the actual and the dry 
configuration: 𝐽! = 1 + 𝛺𝑐!, with 𝑐! = 𝐽𝑐 and 𝑐 
the concentration per unit dry and reference 
volume, respectively, associated with the 
swelling process from ℬ! to ℬ!. Since the two 
processes from ℬ! to ℬ and from ℬ to ℬ! 
contribute multiplicatively to the swelling ratio 
𝐽! = 𝐽!𝐽, solving for 𝐽 gives 

 

 
In addition to the volume constraint (1), the 

set of governing equations includes the balance 
of forces, the balance of solvent and the 
constitutive equations. The balance equations are 
naturally formulated in integral form and then 
localized into the following relations, holding in 
the reference configuration ℬ: 

 
 div  𝑺 + 𝒃 = 𝟎, (2)  
 𝑐 = −div  𝒉, (3)  

 
where 𝑺 is the (Piola-Kirchhoff) stress, 𝒃 is the 
bulk load per unit reference volume, and 𝒉 is the 
solvent mass flux.  

As concerns the constitutive equations, these 
are the outcome of the application of the 
thermodynamic principles, once a representation 
form of the free energy of the system has been 
given. Here, we choose the Flory-Rehner free 
energy, which is well established in the analysis 
of swelling gels. The volume constraint (1) is 
enforced, in the present formulation, by adding 
the term 𝑝 𝐽 − 1 𝐽! − 𝛺𝑐  to the free energy of 
the system, where 𝑝 is a Lagrange multiplier 
having the role of a pressure field. Leaving the 
details of the derivation to [2], we have 
 
 𝑺 =   

𝐺
𝜆!
𝑭 − 𝑝𝑭∗, (4)  

 𝜇 = ℛ𝑇 log
𝛺𝐽!𝑐

1 + 𝛺𝐽!𝑐
+

1
1 + 𝛺𝐽!𝑐

+
𝜒

1 + 𝛺𝐽!𝑐 ! + 𝛺𝑝, 
(5)  

 𝒉 = −
𝑐𝐷
ℛ𝑇

𝛻𝜇, (6)  

 
being 𝐺 the shear modulus of the dry polymer, 𝜇 
the chemical potential of the solvent inside the 
gel, ℛ the universal gas constant, 𝑇 the 

temperature, 𝜒 the dimensionless measure of the 
enthalpy of mixing and 𝐷 the diffusivity of the 
solvent.  

To complete the formulation of the model, 
Eqs. (2) and (3) must be supplemented by the 
appropriate boundary and initial conditions: 
 

𝑺𝒎 = 𝒕  on   ∂!ℬ  ×  ℐ,   
      𝐮 = 𝒖  on   ∂!ℬ  ×  ℐ, 

(7)  

 −𝒉 ⋅𝒎 = 𝑞  on   ∂!ℬ×ℐ,   
            𝜇 = 𝜇!"#  on   ∂!ℬ×ℐ, (8)  

 𝒖 𝑋, 0 = 𝟎,     
𝑝 𝑋, 0 = 𝑝!,     
𝑐 𝑋, 0 = 𝑐!. 

(9)  

 
∂!ℬ and ∂!ℬ the parts of the boundary where a 
traction 𝒕 and a displacement 𝒖 are assigned, 
respectively; ∂!ℬ and ∂!ℬ are the portions 
where the boundary source 𝑞 is prescribed and 
the solvent concentration 𝑐 is controlled through 
the chemical potential 𝜇!"# of the external 
solvent, respectively. The constant pressure field 
𝑝! = 𝐺 𝜆! ensures that the initial state, which 
coincides with the reference swollen state, is 
stress-free.  

The Dirichlet boundary condition (8)2 for the 
diffusion problem corresponds to assuming the 
chemical equilibrium between the boundary 
surface of the gel and the external solvent. It is 
important to note that such condition is implicit 
in the concentration field (see Eq. 5): this fact 
has consequences in the numerical approach, as 
will be discussed in Section 3.  
 To summarize, in the framework of the 
model outlined here, solving an initial-boundary 
value problem consists in finding a displacement 
𝒖, a pressure 𝑝 and a solvent concentration 𝑐 
such that the balance equations (2)-(3), the 
constitutive equations (4)-(6), the volume 
constraint (1) and the corresponding boundary 
and initial conditions (7)-(9) are satisfied.  
 
3. Use of COMSOL Multiphysics 
 
 In order to implement the theoretical model 
described in the previous section in COMSOL 
Multiphysics v4.2a using the Weak Form PDE 
mode, the governing equations have to be recast 
in weak form: 
 

 𝐽 =   
1
𝐽!
+ 𝛺𝑐. (1)  



 

− 𝑺 ∙ 𝛻𝒖   d𝑉 +    𝒕 ⋅ 𝒖
!!ℬ

d𝐴 =
ℬ

0, (10)  

𝑐𝑐   d𝑉 = 𝒉 ⋅ 𝛻𝑐   d𝑉
ℬℬ

+ (𝑞
!!ℬ

𝑐)  d𝐴, 
(11)  

𝐽 −
1
𝐽!
− 𝛺𝑐

ℬ
𝑝  d𝑉 = 0, (12)  

𝜇 − 𝜇!"#
!!ℬ

𝑐! = 0. (13)  

 
Note that also the boundary condition on the 

chemical potential has been written in weak 
form. Indeed, as remarked in Section 2, the 
boundary condition on the assigned chemical 
potential 𝜇 = 𝜇!"#  on  𝜕!ℬ takes the form of an 
implicit Dirichlet condition for the concentration 
𝑐, being the balance of solvent written in terms 
of this state variable. So we cannot assign the 
concentration on 𝜕!ℬ  directly. We treat the 
boundary concentration 𝑐! as an additional state 
variable defined on the boundary where the 
chemical potential is assigned and employ a 
separate Physics Interface (Weak Form PDE – 
Boundary) for 𝑐!, which is then computed by 
solving the algebraic equation (13). Hence, the 
continuity condition 𝑐 = 𝑐! becomes a Dirichlet 
condition for the bulk concentration 𝑐.  

A special treatment also deserves the volume 
constraint. In dealing with it, we adopt a mixed 
approach: the pressure field 𝑝 is considered as an 
unknown of the problem (instead of introducing 
the constraint directly in the governing equations 
to eliminate 𝑝) and the constraint is imposed in 
weak form (Eq. (12)). To avoid volumetric 
locking, we use linear shape functions for the 
pressure field and quadratic Lagrange elements 
for the displacement and the other fields.  

Other possible numerical issues are related to 
the presence of concentration boundary layers 
appearing, for example, in the early stages of 
transient free swelling processes. To resolve the 
sharp gradients without resorting to an excessive 
mesh refinement in the regions where boundary 
layers are present, we implement a change of 
variable, as suggested in [3]. We set 𝑐 = exp  (𝐶) 
and solve for 𝐶 within the computational model. 

  
 
 

4. Results and Discussion 
 

The finite element model was employed in 
two numerical experiments: the free swelling of 
a cubic gel and the squeezing of a thin gel layer. 

In the first experiment, an almost dry cube 
(𝜆! = 1.001) is brought into contact with a 
solvent bath at constant chemical potential 
𝜇!"# = 0. Symmetry arguments allow to model 
only one-eighth of the cube and apply the 
appropriate symmetry boundary conditions. We 
used a structured mesh made of brick elements. 
The values of the parameters of the model were 
chosen as follows: 𝐺 = 40  kPa, 𝜒 = 0.2, 
𝐷 = 8×10!!"m! s, 𝛺 = 6.023×10!!m! mol, 
𝑇 = 293  K. Denoted with 𝐿 the length of the 
edge, the dimensionless time is defined as the 
ratio 𝜏/(!

!

!
). 

As can be observed from Figure 1, the 
swelling process is not homogeneous: the 
corners and the edges swell first, as they have a 
larger contact surface with the solvent in 
comparison with the other parts of the gel. This 
causes the faces of the cube to show a bowl-like 
shape, during the transient. This behavior has 
been observed experimentally, as reported in [4].  

At steady state, the chemical potential 𝜇 of 
the solvent inside the gel equals the one 𝜇!"# of 
the solvent outside, the concentration 𝑐 is 
homogeneous and the deformation 𝑭 is 
homogeneous and isotropic, that is the sample 
recovers its original cubic shape. The steady 
state can be determined analytically [2] in order 
to check the validity of the results obtained 
through the numerical simulation. 

 

 

Figure 1. Several frames of the free swelling of a 
cubic gel immersed in a solvent bath. Color map 
shows the volume ratio 𝑱 at different dimensionless 
times: (a) 0, (b) 1, (c) 10, (d) ∞. The cut view (e) is 
taken at the dimensionless time 10. 



 

In the second experiment a thin gel layer is 
pre-swollen (𝜆! ≅ 3.51) through immersion in a 
solvent bath at zero chemical potential and then 
is bonded to a rigid and impermeable substrate. 
To have a one-dimensional swelling, the gel is 
laterally confined by impermeable surfaces. We 
denote with 𝐿 the swollen thickness of the layer 
and with 𝑧 the coordinate along the thickness 
such that 𝑧 𝐿 = 0 is the bottom surface bonded 
to the substrate, while 𝑧 𝐿 = 1 is the top surface 
exposed to the solvent. The dimensionless time 
has the same definition as for the experiment of 
the cube. 

After the initial swelling and bonding to the 
substrate, the chemical potential of the external 
bath is held fixed and a homogeneous 
compressive force 𝒕 = −𝑠𝒎 is applied on top 
surface, squeezing the gel. The force causes the 
chemical potential of the solvent inside the gel to 
rise to a value greater than zero: this difference 
in chemical potential drives the solvent outside 
the gel. As shown in Figure 2, this does not 
happen immediately: the stretch 𝜆 along the 
thickness with respect to the reference (swollen) 
configuration is different from 1 (initial 
condition) only in the vicinity of the top surface, 
which is in contact with the solvent and the 
force. Then the system tends towards a new 
equilibrium steady state characterized by 𝜆 < 1.  

The parameters of the model were chosen as: 
𝐺 = 40  kPa, 𝜒 = 0.2, 𝐷 = 1×10!!   m! s, 
𝛺 = 6.023×10!!   m! mol, 𝑠𝜆!!𝛺 ℛ𝑇 = 0.05, 
𝑇 = 293  K.  

To resolve the steep stretch profile in the 
early transient the finite element mesh was 
locally refined. The numerical solution reported 
here was validated by comparison with the 
solution of a one-dimensional problem defined 
along the thickness [5]. 
  
5. Conclusions 
 

We have described a nonlinear multiphysics 
field theory that allows to analyze the swelling 
phenomena that take place in polymer gels. We 
have implemented the theory in COMSOL 
Multiphysics v4.2a using the Weak Form PDE 
mode and successfully assessed the validity of 
the model through several benchmarks. 

This model represents a valuable tool to have 
insight into the physical processes occurring in 
gels and to aid the design of gel-based devices. 
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Figure 2. Stretch along the dimensionless coordinate 
z/L of a squeezed thin gel layer at several 
dimensionless times: (from right to left) 1, 10, 20, 50, 
100.  


