

Optimization of Thermal Properties Identification of Complex Thin films Using MATLAB® and COMSOL Multiphysics®

COMSOL

2012

NFERENCE

Birane Wane, <u>Nadjib Semmar</u> GREMI-UMR 7344, CNRS- University of Orleans, FRANCE

COMSOL Conference 2012, Milan, October 10-12th

Motivations

Study of thermal properties for thin films :

- > AIN (Highly conductive)
- > YSZ (ceramics thin film)
- Metals
- > Dielectric films...
- Their applications in next generation microelectronic devices :
 - > QCL, HEMT, Thin film fuel cells
- Fundamental knowledge of condensed matter thin film state : mesoporous Si, CNTs...
 - > J.Phys.D 2011, J.A.P. 2012, ...

Principle of PhotoThermal method

- Absorption of laser pulse energy rapid increase of temperature and then relatively slow temperature decrease
 - Detector calibration curve U(T) – heating support
- Experiment evaluation:
 U(t) I T(t)

Experimental Setup

Sample holder

Photo-thermal nano-second

What is thermal identification?

Built a realistic model to fit well the experimental curves based on the multilayer system physical parameters 1- 1D analytical model for multilayer thin films (Balageas) : Matlab Experiments gives 3 group of parameters

Eingenvalues problem

2- Comparison with the 3D model namely for low conductive and complex thin films :

Creation of full model under Comsol :

Thin films/participating media (Heat Transfer Module)

3D Model in COMSOL – heat source

 Laser penetration into depth of sample is ruled by Beer-Lambert law

 $I(z) = I_0 \cdot e^{-az}$

Material	n_1	n_2	<i>a</i> (m ⁻¹)	δ <i>a</i> (nm)
Al	0.19	2.94	0.1490.10-9	13.4253
Cu	1.12	1.88	0.0953.10-9	20.9949
W	3.4	0.14	0.1444.10-9	13.8493

Optical properties:
 complex refractive index

$$n = n_1 + in_2$$

absorption coefficient

$$a = \frac{2\omega n_2}{c} = \frac{4\pi n_2}{\lambda} = \frac{2}{\delta a}$$

Modeling of UV laser beam absorption

deconvolution

and linear variation of pics

3D Model in COMSOL : Si/YSZ/Ti

Bulk silicon : well known properties

Livelink loop

Our new strategy :

- 1 Starting 1D with Matlab (Balageas model)
- 2 Then Livelink to Run Comsol.

Runing this loop until convergence of thermal fields :

3 - **Outpout data :** density, thermal conductivity, heat capacity

Output data: best results!

Yttria-Stabilised-Zirconia (YSZ)

Conclusions

- New way for the optimization of thermal properties identification.
- But high number of loops, and long computation time.
- Is the 'Optimization Module' able to do faster computations using more adapted models?

THANKS

Experimental system - schematic view

