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Phononic Crystals

= Phononic crystal are materials that have periodic variations in their
mechanical properties

= Phononic structures provide a route to control the propagation of
mechanical wave by engineering the structure of the materials

= The concept has been extended to the high frequency phonon
domain
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Phonon Dispersion Relation Simulation

» Plane Wave Expansion (PWE)

= Easy to implement
= Convergence problem for structures with large elastic mismatch

» Finite Difference Time Domain (FDTD)

= Real time and transmission simulation
= Band folding problem for super cell

» Multiple Scattering Theory (MST)
= Accurate
= Long computation time and limitation overlap scatters

» Finite Element Method (FEM)

= Good for complicated structure design
= Shows displacement fields
= Requires lots of memory

» Molecular Dynamics (MD)

= For nano-scale structures(< 100 nm, THz phonons)
= Large computation amount when scales up




Governing Equation for Wave
Propagation

The general elastic wave equation
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The solutions satisfying the Block theorem due to the periodic
nature of phononic crystals

u.(F,t) =e'®"U.(F,1)




Plane Strain and Mindlin Plate Models

Plane Strain and Mindlin Plate modules were applied to solve for the
in-plane and out-of-plane phonon eigen-frequencies respectively
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COMSOL Multiphysics Model

= Unit cell was built in COMSOL Multiphysics with the periodic
boundary conditions

= Plane strain and Mindlin modules were applied to solve the eigen-
frequencies for in-plane and out-of-plane vibrations

= Phonon dispersion relations along symmetric directions in the
reciprocal space are plotted using a Matlab code
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Subdomain Settings
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Boundary Condition Settings
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Compare Simulation Results

200001

= Phononic band structures simulated using COMSOL show good
agreement with published results

Wave Vector

= |t can be used to simulation different materials combination and
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Characterize the Phononic Band Structure

Phononic band structures in the low GHz range can be characterize by the Brillouin
light scattering (BLS)
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Conclusions

COMSOL models are created to calculate the phonon
dispersion relations

The simulation results show good agreement with existing
numerical simulation results

Inelastic scattering experiment will be perform to compare
with the simulation results



