

Gravitational Collapse of Rectangular Granular Piles

M.H. Babaei

Ocean, Coastal, and River Engineering, National Research Council of Canada, Ottawa, Canada

T. Dabros

Natural Resources Canada, CanmetENERGY, Devon, Alberta, Canada

S.B. Savage

Department of Civil Engineering & Applied Mechanics, McGill University, Montreal, Quebec, Canada

4 Oct. 2012, COMSOL2012, Boston, USA

National Research Conseil national Council Canada de recherches Canada

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Presentation Outline

- Introduction, Motivation & Background
- Constitutive Relations
- Numerical Solution
- Material Properties & Investigated Geometries
- Results
 - Evolution of Slump Shapes
 - Comparison with Experimental Data
- Summary & Conclusions

Introduction

- Flow & collapse of granular materials:
 - Industry:
 - Agriculture
 - Pharmaceuticals
 - Petroleum & Mining
 - Geophysical processes:
 - Landslides
 - Avalanches

Motivation & Background

- Available Literature
 - Experimental
 - Geometries (2D Symmetric, 2D dam-break, Semi-Axisymmetric, Axisymmetric)
 - Materials (sand, glass beads, rice, sugar, ...)
 - Basal conditions (rough and/or smooth bottom)
 - Numerical
 - Usually depth-averaged equations, shallow-water approximation
 - Collapse of short-thick blocks; NOT tall-thin blocks

Constitutive Relations & Governing Equations

- Modified von Mises yield function
- Isotropic
- Associated flow rule
- Incompressible
- Plane strain

Stress-strain rate relationship:

$$\sigma_{ij} = \sigma_m \delta_{ij} - (\dot{\epsilon}_{ij} - \dot{\epsilon}_{kk} \delta_{ij} / 3) \sigma_m \sin \phi / (I_2)^{0.5}$$

 The granular material is a fluid with the dynamic shear viscosity of:

$$\eta = p \sin \phi / \left(2 \left(I_2 \right)^{0.5} \right) \longrightarrow \eta = \alpha + p \sin \phi / \left(2 \left(\beta + I_2 \right)^{0.5} \right)$$

Numerical Stability

Numerical Solution

• COMSOL FE tool (version 4.2a), CFD two-phase laminar flow module

• The Level-Set method was used to track the interface between the two phases

Granular Material

• Grit, irregular grain shapes, mean size 1 mm.

Geometries

Results

Triangular mesh, element size is approximately 4 mm

Evolution of Slump Shapes

CASE I, Low Aspect Ratio Pile

increasing time

NRC-CNRC

Collapse of Rectangular Granular Blocks, Babaei, Dabros, Savage

Evolution of Slump Shapes

CASE II, High Aspect Ratio Pile

Gravitational Collapse of Rectangular Granular Piles, Babaei, Dabros, Savage

NRC CNRC

Comparison with Available Experiments

- Close prediction of the final runout, final height, and the final free surface profile
- An increase in the internal angle of friction reduces the runout

Summary & Conclusions

- Mohr-Coulomb based constitutive relations
- Strain-rate and pressure dependent shear viscosity
- Two-phase flow problem
- Partial slip at boundaries in contact with the granular material
- Stable heaps are captured
- Final free-surface profiles agree with experiments

Thank you!

