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Abstract 
We present a problem-adapted finite element model for the simulation of an electrostatically actuated micro-

membrane pump. The pumping principle heavily relies on the electrostatic pull-in. However, the combination of 

electrostatic pull-in and mechanical contact in a transient fluid-structure interaction FEM simulation poses a hard-

to-solve problem. We developed adaptations, which overcome the numerical singularities, and drastically improve 

convergence. 
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Introduction 
We developed a new type of electrostatically 

actuated, monolithic MEMS membrane pump [1]. It 

is based on a radial design with an annular valve 

ring surrounding the pump chamber. The pump and 

valve membranes are actively steered and can be 

moved independently. The membranes are 

equipped with anti-sticking structures similar to 

those presented in [2] to prevent adhesion to the 

counter electrodes at pull-in. 

The pump cycle consists of four consecutive 

actions (see Figure 1): sucking new fluid into the 

deflated pump chamber, closing the inlet, expelling 

the fluid, and closing the outlet. The valve specially 

designed for this purpose closes the inlet when the 

outlet is opened in one single action, and vice versa. 

First prototypes show promising results. However, 

further improvement necessitates deeper insights 

into the internal behavior of the system. Due to the 

monolithic nature and the small size of the 

micropumps, conventional methods of live 

monitoring, e.g. with sensors inside the pump 

chamber, are not possible. Therefore, a simulation 

model is to be developed. 

Governing Physical Models 
As a first simplification, the pump can be very well 

approximated with a two-dimensional, 

axisymmetric model. 

Simulating a pumping cycle incorporates coupling 

electrostatics, structural mechanics, and fluid 

dynamics. Additionally, the deforming fluid 

domain requires a moving mesh. 

This section describes the physical models for the 

different domains. COMSOL provides interfaces 

for all these physical models. However the 

straightforward approach to combine the default 

interfaces led to either unacceptable small time 

steps, or no convergence at all. We identified the 

combination of mechanical contact and singularities 

in the electrostatic interaction as the main problem. 

The section after this describes how we solved 

these problems and achieved stable convergence. 

Fluid Dynamics 

The pump is designed to pump air at isothermal 

standard conditions. Due to the small velocities, the 

air can be considered incompressible. As is 

common in MEMS, the Reynold’s number is very 

small. However, we cannot neglect the convective 

acceleration term ����⃗ ⋅ ∇���⃗ , because air flowing 

radially in- or outwards undergoes a large change in 

velocity due to the strongly changing cross-

sectional area. 

At standard conditions, the mean free path of air 

molecules is roughly 68 nm. For our pump, this 

leads to a Knudsen number in the order of 0.1, 

which is the start of the slip-flow regime. As a 

consequence, the no-slip condition at walls must be 

replaced with a slip-velocity condition [3]. 

This is a straightforward application of the Laminar 

Flow interface. 

Structural Mechanics 

The deformation of the membrane at pull-in is 

rather small compared to the overall geometrical 

extensions. At these deformations, Polysilicon can 

be described by an isotropic linear elastic material, 

which is fully characterized by Young’s modulus, 
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Figure 1. Pump cycle. 
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Poisson’s ratio, and the density. Furthermore, we 

need the mechanical contact functionality to model 

the anti-sticking structures touching the counter 

electrodes at pull-in. 

Fluid-Structure Interaction and Moving Mesh 

We deal with a fully-coupled fluid-structure 

interaction problem, where the fluidic pressure acts 

as a boundary load on the structures, and the 

deforming structure acts as a moving wall. The 

deformation of the fluid domain is handled by the 

Moving Mesh functionality of COMSOL. 

Electrostatics and Electromechanical Forces 

The electrodes can be modelled as terminals with 

the Electrostatics interface. This leads to COMSOL 

solving for the electrostatic potential everywhere. 

The Electromechanical Forces node then results in 

a boundary load on the structure due to the sudden 

change in electric susceptibility. 

Convergence Difficulties 

This combination of COMSOL interfaces, however, 

did not lead to satisfactory results. Due to the nature 

of electrostatic interaction, the force pulling on the 

membrane increases with the inverse square of the 

distance: 

�es ∝ ���. 
This leads to a quadratic singularity during pull-in 

that has to be balanced by the mechanical contact 

forces. However, the mechanical contact forces 

pose already a strongly non-linear problem 

themselves. They arise suddenly once contact is 

established and are solved for to be large enough to 

counterbalance the electrostatic interaction. 

In addition, during transient simulations, the sudden 

spike in the boundary loads causes vibrations 

within the structural mechanics part, which in turn 

leads to very small time steps for the solver. 

Finally, we do not need the detailed spatial 

distribution of the electrostatic potential. 

Thus we abandoned the modelling approach with 

mechanical contact and the electrostatics interface, 

in favor of a numerical more stable approximation. 

Numerical Stabilization Measures 
This section first explains our solution to the 

singularity within the electrostatic interaction, and 

after that the smoothing of the mechanical contact. 

Regularized Electrostatic Interaction 

Due to the geometric extensions, the electric field 

between the electrodes can be adequately described 

by a plate capacitor. In this case, the boundary load 

can be written as 

��⃗ es � ����
2 ⋅ � 

!"
�

⋅ #�⃗ , 
with ! as the distance between the two plates. To 

overcome the quadratic singularity, we replaced the 

function !�� with a non-singular approximation, 

which behaves like !�� within the range of interest, 

while staying regular otherwise. 

This process is called regularization. In our case we 

took inspiration from the work in [4], where the 

authors describe a way to solve for incompressible 

fluid flow by reducing it to a mesh-free $-body 

problem, where vortices are described by particles. 

Combining these particles results in equations 

similar to the law of Biot-Savart, which becomes 

singular for small distances. The solution is to 

smear out the particles over a finite distance while 

altering the force computation accordingly. 

However, the regularization functions listed in [4] 

are developed with vortex particles in mind. 

For our problem, we discovered the function family 

%&�!� � ' 1
�!� ( 1�)

&

)*+
 

to be a very good candidate for a regularized 

version of !��, given a suitable value of #. It 

behaves as %&�!� ∈ -�!��� for large !, and is 

smooth everywhere. 

Figure 2 shows a comparison for different values of 

#. The relative error can be computed as 

!�� . %&�!�
!�� � 1

�!� ( 1�& . 
We decided to use # � 4, resulting in 

%0�!� � !1 ( 4!0 ( 6!� ( 4
�!� ( 1�0 . 

Given some characteristic distance !�, the boundary 

load can be approximated as 

��⃗ es � ����
2 ⋅ �  

!�
"

�
⋅ %& � !

!�
" ⋅ #�⃗ . 

The minimum distance between the electrodes is 

given by the height ℎ� of the anti-sticking 

structures. With !� � ℎ� 23 , the argument for %& is 

always larger than 2, thus the maximum relative 

error is about 0.2%. This is by far accurate enough, 

as neither material parameters, nor the temperature, 

or the humidity conditions are known to such 

precision. 

This allows to replace the entire Electrostatic 

interface and the Electromechanical Forces 

multiphysics node with an equivalent boundary load 

for the Structural Mechanics interface. 

Figure 2. Comparison of !�� and %&�!� for # ∈ 52,46. 
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Smooth Mechanical Contact 

COMSOL allows to simulate mechanical contact by 

introducing the contact pressure as Lagrange 

multipliers, together with a no-penetration-

constraint. This leads to a highly non-linear 

problem. 

However, during pull-in, the contact boils down to 

a load on the boundaries, that counterbalances the 

electrostatic load. Then the anti-sticking structures 

will undergo a small deformation. We analyzed this 

behavior with separate COMSOL simulations. 

Given the typical electrostatic load at distance ℎ�, 

we determined the deformation Δ!. This allows to 

model the contact force as a spring-like boundary 

load 

��⃗ contact�!� � .< ⋅ Δ! ⋅ #�⃗ , 
with a spring constant <, extracted from the 

separate simulation runs. 

This spring load is smoothly ramped up within the 

vicinity of the anti-sticking bumps and behaves as a 

normal linear spring load around the distance, 

where contact is expected. 

Combination and Final Model 

These two regularization approaches still result in 

an overall non-linear form for the electrostatic and 

the contact force. However, the interactions are free 

of singularities and all loads vary smoothly now. As 

a result, the non-linear system of equations became 

easier to solve, and the convergence behavior 

improved dramatically. This also prevented the 

time-dependent solver from using unreasonable 

small time steps. 

Simulation Results 
All those solutions combined result in a stable and 

fast calculating simulation model. This model has 

already been used to carry out optimization cycles 

for the micropumps [5]. 

Within the scope of these optimization cycles, an 

error condition could also be identified, which was 

verified by tests on prototypes. At high drive 

frequencies, a phenomenon occurs in micropumps 

with pump chamber diameters above 300 µm that 

has a detrimental effect on pumping performance: 

During the ejection process, fluid is trapped in the 

center of the pump chamber because the diaphragm 

can lay down on the pump chamber floor faster in 

the surrounding areas than in the center [5]. 

However, the simulation model could not only be 

used to identify the problem and trace the causes. It 

was also possible to test different solutions to the 

problem through this kind of digital prototyping. A 

working solution resulted from an adapted 

geometry of the bottom counter-electrode. The 

bottom counter-electrode now forms a hill in the 

center of the pump chamber, touching the pump 

membrane. During the ejection process, the pump 

membrane can come into contact with the bottom 

counter electrode along the flanks of this hill, 

starting at its top. Thus, the fluid is now ejected 

completely from the center to the edge of the pump 

chamber (see Figure 3). 

Subsequently, a parameter study using this new 

pump chamber geometry could be carried out, 

which allows the selection of optimal combinations 

of geometry parameters for different applications. 

An exemplary result of this parameter study can be 

seen in Figure 4. 

Conclusions 
We developed a problem-adapted finite element 

model to support the design and optimization of a 

novel, electrostatically actuated MEMS pump. 

However, the required combination of electrostatic 

pull-in and mechanical contact in a time-dependent 

FSI-FEM simulation is a problem that could not be 

solved by simply combining COMSOL’s default 

interfaces. Thus, adaptations were made to 

overcome the numerical singularities. This has also 

drastically improved convergence. 

The simulation model has since proven its 

usefulness and validity during optimization cycles 

for the micropumps. In addition, it was even 
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Figure 4. Results of parametric studies and selected 

combinations (pressure in Pa) [4]. 

Figure 3. Pumping cycle at selected points in time. 

Simulation results of the model with adapted bottom 

counter-electrode shape. 
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possible to identify a previously unknown, potential 

fault case, which was later confirmed by tests with 

prototypes. 

As a next step, new prototypes with this adapted 

geometry have to be produced and tested. The 

simulation model must then be validated and 

calibrated again using the new measurement data. 
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