

METALLISKA MATERIAL	GJUTE FÖRENING Swedish Foundry Asses	Jernkont	oret M Sv	enskt uminium
Med stöd från	JOVA tionsmyndighet		FORMAS #	Strategiska innovations- program

Modelling of induction heating in steel reheating furnaces

Ted Sjöberg - PhD Researcher, Ted.Sjoberg@swerim.se

Outline

- Swerim in short
- Pilot experiments
- Simulation setup
 - Geometry
 - Physics interfaces

SWERI/

- Results
 - Super Duplex 2507
 - Low carbon steel
- Conclusions & next step

Swerim conducts needs-based industrial research and development concerning metals and their route from raw material to finished product. Our vision is a fossil-free and circular industry.

Swerim in short

- Independent research institute
- Unique pilot, test and demonstration facilities (Customized experimental equipment)
- Customers from all over the world
- Long-term strategic partner
- Three research councils with industry representatives
- 190 employees
- Turnover approximately SEK 250 million

Pilot experiments

Induction furnace

• Max power 900kW (material and shape specific)

SWERI/

- 4 induction coils (counter-wound)
- Frequency range 350 600 Hz
 - Set by capacitor bank in an IC-circuit
- Length 3.4 m
 - Ceramic inner lining
 - Hydraulic rollers for oscillation of workpieces
 - · Insulated gaps and hoods at sides
- Max temperature 1300 °C
- Capacity 2.5 ton/h (20 to 1250 °C)
- Geometries
 - Workpieces 125-300 x 60-125 x 1600-1700 mm

Measurements

S type thermocouples for continuous temperature measurements

Thermographic imaging camera for scanning of workpiece sidewalls

Line scanning at 10 Hz as billet travels

Simulation geometry

- Four coil pairs
 - 24 turns per pair
 12 turns + 12 turns reverse
- Quarter symmetric geometry
- Two-part air domain
 - Stationary red domain
 - Oscillating green domain

Simulation setup Magnetic fields

- Rectangular workpiece
 - Simple relative permeability $B = \mu_0 \mu_r(B,T)H$
 - Temperature dependent conductivity
- Two air domains
 - Stationary + Moving
- Eight coils
 - Homogenized multiturn
 - External coil excitation using circuit voltage
- Infinite Element Domain

Simulation setup Heat transfer in solids

- Temperature dependent material parameters
 - Thermal conductivity
 - Heat capacity
- Simple boundary conditions
 - Constant heat flux
 - Constant surface-to-ambient radiation
 - Symmetry

SWERI/

Simulation setup Electrical circuit

- Model behaviour of resonant circuit
 - Coils "External U vs I"
 - Capacitor bank
 - Voltage source
- Idealized circuit, no resistive losses

Simulation setup Moving mesh

SWERI/

- How to model oscillating workpiece?
 - Deforming mesh.
 - Moving mesh
 - Retain continuity
 - Reasonable time-stepping
- Discrete stepping
 - Step size chosen to retain mesh continuity

Results

- Pilot experiment workpiece was equipped with thermocouples
- Thermal imaging was used along one side of workpiece
- Pilot induction furnace is equipped with multiple measurement systems
 - Coils: power, current, voltage drop
 - Cooling water in- & outgoing temperature

Results - Super Duplex 2507 Coil voltage drop

Results - Super Duplex 2507 Coil current

Results - Super Duplex 2507 Coil power

Results - Super Duplex 2507 Heating rate

Results - Super Duplex 2507 Temperature

Results – Low-alloyed steel Coil voltage drop

SWERIM

Results - Low-alloyed steel Coil current

Results - Low-alloyed steel Coil power

Results - Low-alloyed steel Heating rate

Results – Low-alloyed steel Temperature

Conclusions and future work

- Used simple material models work well and give reasonable results
- Moving workpiece is simulated well using discrete stepping with conforming mesh
- Simulation of LC-circuit yields satisfactory results when compared to measurements from experiments

- Further improvement of thermal boundary conditions could increase simulation accuracy
- Simulations of more, different experiments could prove interesting.
 - Differing oscillation velocity
 - Differing coil frequency
 - More material grades

DET STRATEGISKA INNOVATIONSPROGRAMMET

Ted.Sjoberg@Swerim.se