

Simulation of Dendritic Solidification in Cubic and HCP Crystals by Cellular Automaton and Phase-Field Models

Mohsen Asle Zaeem*

(Ph.D., Assistant Research Professor)

Center for Advanced Vehicular Systems, Mississippi State University

Hebi Yin

(Ph.D., Postdoctoral Research Associate)

Oak Ridge National Laboratory

Sergio D. Felicelli

(Ph.D., Professor) Mechanical Engineering Department, Mississippi State University

Motivation

- Spatially distributed phases of different compositions and/or crystal structures
- Grains of different orientations, domains of different structural variants
- Domains of different electrical or magnetic polarizations
- Structural defects

Microstructural evolution is common in many fields including biology, hydrodynamics, chemistry, and phase transformations.

Microstructures controls

- Mechanical
- Electrical
- Magnetic
- > Optical

Mississippi State

Chemical

properties of materials

COMSOL

Introduction

The study of free boundaries-interfacial regions can be grouped into two categories

L.-Q. Chen, Annu. Rev. Mater. Res. 32 (2002) 113.G. Caginalp and W. Xie, Phys. Rev. E 48 (1993) 1897.

Phase-field models (diffusive interface)

- Solid-state phase transformations (coupled to elasticity)

- Interfaces between immiscible fluids (coupled to Navier–Stokes)

COMSO

2011

CONFER

Introduction

Applications of Phase-Field Model

- Solid State Phase Transformation
- Phase Transformation in Thin Films
- Solidification
- Grain Growth polycrystalline materials
- Dislocation Dynamics
- Crack Propagation
- Electromigration
- Multi-Phase Fluid Flow

CONFE

2011

Long-Qing Chen, Phase-field models of microstructure evolution, Annu. Rev. Mater. Res. 32 (2002) 113-140. Yunzhi Wang, Ju Li, Overview No. 150: Phase field modeling of defects and deformation, Acta Materialia 58 (2010) 1212–1235.

Commonly Used Numerical Methods to Solve The Governing Equations of Phase-Field Models

- Finite difference method (FDM) (Cahn and Kobayashi 1995; Johnson 2000)
- Fourier-spectral methods (Chen and Shen 1998, 2009; Boisse et al. 2007)

<u>These methods have limitations in 2D and 3D models when</u> irregular geometries or complex boundary conditions are involved

We develop a general numerical method applicable to a variety of geometries and boundary conditions.

M. Asle Zaeem and S.Dj. Mesarovic, Journal of Computational Physics 229 (2010) 9135-9149.

During solidification of metals and their alloys, the formation of complex dendrite microstructures has significant effects on the mechanical and material properties of cast alloys.

Cellular automaton →thermal diffusivity Heat transfer: $\frac{\partial T}{\partial t} = \alpha \cdot \nabla^2 T + \frac{L}{\rho C_s} \frac{\partial f_s}{\partial t}$ Mass transfer: $\frac{\partial C_i}{\partial t} = D_i \cdot \nabla^2 C_i + C_i \cdot (1-k) \frac{\partial f_s}{\partial t}$ Solid/Liquid interface: $C_s = k \cdot C_l$ partition coefficient The increase solid fraction: $\Delta f_s = (C_1^* - C_1)/(C_1^* \cdot (1-k))$ Interface equilibrium composition: equilibrium liquidus T at C_0 Gibbs-Thomson coefficient $C_1^* = C_0 + \frac{T^* - T_1^{eq} + \Gamma K f(\varphi, \theta_0)}{\sqrt{m_1 - m_1}}$ interface equilibrium T $m_1 - m_1$ liquidus slope $\uparrow \uparrow \rightarrow$ curvature at SL interface Function of anisotropy of surface tension:

$$f(\varphi, \theta_0) = 1 - \delta \cos[4(\varphi - \theta_0)]$$
growth angle anisotropy coefficient

Time step for heat: Mississippi State

$$\Delta t_{\rm T} = \frac{\rho C_p (m \cdot \Delta x)^2}{4.5\lambda} \underbrace{\text{coll size}}_{\text{College of ENGINEERING}}$$

0.0001 **Control Volume** 8E-05 6E-05 h k 4E-05 2E-05 0 L 2E-05 4E-05 6E-05 8E-05 0.0001 k h CA Cell $m \times m$ cell Time step for mass: $\Delta t_{\rm C} = \frac{\Delta x^2}{4.5 D_{\rm c}}$ Ration of two

time steps: $N_t = \Delta t_{\rm C} / \Delta t_{\rm T}$

Pb, cubic structure with four-fold symmetry

Dendrite morphology at 0.1 s with $_{\text{GE-05}}$ different cooling rates caused by different BCs, and comparison to published results

Higher cooling rate enhances the formation of secondary arm

High cooling rate

COMSOL

2011

CONFERENC

High cooling rate

Ε

SE

S

angle between the primary arms is not 60 degree. It grows aligning with the axis of the mesh, or at

Map of composition

Growth in six directions

SW

W

Missis

COMSOL

2011

CONFEREN

2011

CA – grid dependent anisotropy, (Krane , et al. 2008)

Hexagonal mesh reduces grid-induced anisotropy, (*Grest, et al. 1985*)

2D hexagonal mesh is generated to simulate the HCP crystal material

FE Mesh

Hexagonal mesh for heat transfer

Mass transfer and dendrite growth

Kobayashi's Model – Pure Materials (R. Kobayashi, Physica D 63 (1993) 410-423)

$$F(\phi, m) = \int_{V} \left(f_{local}(\phi, m) + f_{grad}(\phi) \right) dV$$

$$f_{local}(\phi, m) = \int_{0}^{\phi} \phi(\phi - 1)(\phi - \frac{1}{2} + m) d\phi$$

$$f_{grad}(\phi) = \kappa^{2} (\nabla \phi)^{2} / 2$$

$$\alpha(\theta) = \overline{\alpha} \sigma(\theta)$$

$$m(T) = (\alpha / \pi) \tan^{-1} [\gamma(T_{e} - T)]$$

$$\sigma(\theta) = 1 + \delta \cos[j(\theta - \theta_{0})]$$

 $\theta = \tan^{-1} \left(\frac{\partial \phi / \partial y}{\partial \phi / \partial x} \right)$

 $\varepsilon \frac{\partial \phi}{\partial t} = -\frac{\delta F}{\delta \phi} \quad \text{Time-dependent Ginzburg-Landau (TDGL) equation}$ $\varepsilon \frac{\partial \phi}{\partial t} = -\frac{\partial}{\partial x} \left(\alpha \alpha' \frac{\partial \phi}{\partial y} \right) + \frac{\partial}{\partial y} \left(\alpha \alpha' \frac{\partial \phi}{\partial x} \right) + \nabla \cdot (\alpha^2 \nabla \phi) + \phi (1 - \phi)(\phi - \frac{1}{2} + m)$ $\frac{\partial T}{\partial t} = \nabla^2 T + K \frac{\partial \phi}{\partial t}$

COMSOL CONFERENCE

For a binary alloy, the Gibbs-Thomson equation for an isotropic surface energy can be written as

$$\frac{1}{\mu |\nabla \phi|} \frac{\partial \phi}{\partial t} = T_m - T + m_l C_l - \Gamma \nabla \cdot \mathbf{n} \qquad \mathbf{n} = -\frac{\nabla \phi}{|\nabla \phi|}$$

Density

 $\widetilde{D} = D_s + (D_l - D_s) \frac{1 - \phi}{1 - \phi + k\phi}$

$$\tilde{\rho} = \rho_s + (\rho_l - \rho_s) \frac{1 - \phi}{1 - \phi + k\phi}$$

(I)
$$\frac{\partial C}{\partial t} = \nabla \cdot \widetilde{D} \left[\nabla C - \frac{(1-k)C}{1-\phi+k\phi} \nabla \phi \right]$$

(II) $\frac{\partial T}{\partial t} = k \cdot \nabla^2 T + \frac{L}{\tilde{\rho}C_{\rm P}} \frac{\partial \phi}{\partial t}$

Governing Equations Solved by Math Module COMSOL multiphysics

$$(III) \quad \frac{\partial \phi}{\partial t} = \mu \Gamma \left[-\frac{\partial}{\partial x} \left(\alpha \alpha' \frac{\partial \phi}{\partial y} \right) + \frac{\partial}{\partial y} \left(\alpha \alpha' \frac{\partial \phi}{\partial x} \right) + \nabla \cdot (\alpha^2 \nabla \phi) - \frac{\phi (1 - \phi)(1 - 2\phi)}{\lambda^2} \right] + \mu (T_m - T + m_l C_l) \frac{\phi (1 - \phi)}{\lambda}$$

Mississippi State

COMSOL

Property	Value
Thermal expansion coefficient (β_T)	$-2.6 \times 10^{-5} \text{ K}^{-1}$
Density	2475 kg m ⁻³
Diffusivity of alloy elements in liquid (D_i)	$3.0\times 10^{-9}\ m^2\ s^{-1}$
Diffusivity of alloy elements in solid (D_s)	$3.0\times 10^{-13}\ m^2\ s^{-1}$
Thermal conductivity	30 J K ⁻¹ m ⁻¹ s ⁻¹
Average specific heat	500 J kg ⁻¹ K ⁻¹
Latent heat of fusion (L)	$3.76 \times 10^4 \text{ J kg}^{-1}$
Gibbs-Thomson coefficient	$2.4 \times 10^{-7} \mathrm{K \cdot m}$
Liquidus slope	-2.6 K/wt pct
Partition ratio	0.17
Melting temperature of pure substance	933.6 K

COMSOL

Cellular automaton versus Phase-field model

Al-3.0 wt.% Cu alloy

Cellular automaton versus Phase-field model Al–3.0 wt.% Cu alloy

MgAZ91 alloy properties

Property	Value
Thermal expansion coefficient (β_T)	$-2.6 \times 10^{-5} \mathrm{K}^{-1}$
Density of liquid (ρ_i)	1650 kg m ⁻³
Density of solid (ρ_s)	1750 kg m ⁻³
Viscosity (μ)	$2\times10^{-3}\mathrm{N~s~m^{-2}}$
Diffusivity of alloy elements in liquid (D_i)	$5.0 imes 10^{-9} \text{ m}^2 \text{ s}^{-1}$
Diffusivity of alloy elements in solid (D_s)	$5.0\times 10^{-13}m^2~s^{-1}$
Thermal conductivity in liquid (λ_i)	80 J K ⁻¹ m ⁻¹ s ⁻¹
Thermal conductivity in solid (λ_s)	$105 \ J \ K^{-1} \ m^{-1} \ s^{-1}$
Average specific heat of liquid (c_l)	1350 J kg ⁻¹ K ⁻¹
Average specific heat of solid (c_s)	1200 J kg ⁻¹ K ⁻¹
Latent heat of fusion (L)	$3.7 \times 10^5 J kg^{-1}$
Liquidus temperature (T_R)	868 K
Eutectic temperature (T_{E})	705 K
Gibbs-Thomson coefficient	2.0×10^{-7} K·m

Developed Phase-Field Models using COMSOL

Dendritic Solidification of Cubic and Hexagonal Lightweight Materials

- Significance: multi-component alloys solidification was developed
 - multiple-arbitrary orientated hexagonal dendrites

M. Asle Zaeem et al., Mater. Manuf. Processes (2011).

- Grain Growth in Polycrystalline Materials
 - Significance: anisotropic grain boundary energy incorporated in phase-field model

M. Asle Zaeem et al., Comput. Mater. Sci. 50 (8) (2011) 2488-2492.

Phase transformation in binary alloys

- Significance: maps of transformations of binary multilayers

M. Asle Zaeem et al., J. Phase Equilib. Diff. 32 (2011) 302-308.

Morphological Instabilities in Multilayers

- Significance: maps of transformations of binary multilayers

M. Asle Zaeem & S. Mesarovic, Comput. Mater. Sci. 50 (3) (2011) 1030-1036.
M. Asle Zaeem et al., Modern Physics Letters B 25 (2011) 1591-1601.

Oxidation of Zirconium Alloys in Nuclear Power Plants
 Significance: kinetics of oxidation was captured

M. Asle Zaeem et al., J. Nuclear Mater. (2011)-submitted

CONFER

Future Research

3D phase-field finite-element modeling of solidification

CONFE

- Study the effects of adding new elements on dendrite shape and spacing (alloys design)
- Interaction between bifilms and dendrites: oxide bifilms initiate defects after casting
- Study crystallization of polymers

COMSOL,