Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Laser Heating - A Self Guided Tutorial

This tutorial shows how to model transient heat conduction in a glass slab heated by a laser beam. The tutorial emphasizes on the use of functions to model the laser power as a body heat source. Several key design variables have been parameterized. Suggestions on meshing and solver settings are provided. Three different modes of operation are investigated. - Stationary laser emitting ...

Buoyancy Flow in Free Fluids

This model couples the Navier Stokes equations and the heat transfer equations to examine density driven flow of free fluids. Here the fluid is in a square cavity with a heated wall. The buoyancy force is a Boussinesq term added to the Navier-Stokes equations. The equation is nondimensionalized, so the material coefficients are set up using Rayleigh and Prandtl numbers. The parametric solver ...

Thin-Layer Diffusion

This tutorial model demonstrates the use of brick and prism meshes to mesh thin 3D structures. An identity boundary condition makes sure that the concentration is the same across the interface between the two geometries. Connecting two different mesh types is a good way for saving memory in geometries with large aspect ratios. In this example, the curved geometry requires greater resolution ...

Magnetic Drug Targeting

Current research on methods to target chemotherapy drugs in the human body includes the investigation of biocompatible magnetic nanocarrier systems, for example magnetic liquids such as ferrofluids. This model investigates an external magnetic field and its interaction with blood flow containing a magnetic carrier substance. The model is based on the Maxwell and Navier-Stokes equations, where a ...

Using Global Equations to Satisfy Constraints

Global equations are a way of adding an additional equation to a model. A global equation can be used to describe a load, constraint, material property, or anything else in the model that has a uniquely definable solution. In this example, a structural mechanics model of a spring is augmented by a global equation which solves for the load to achieve a desired spring displacement.

Thin Film Resistance

In modeling of transport by diffusion or conduction in thin layers, we often encounter large differences in dimensions of the different domains in a model. If the modeled structure is a so-called sandwich structure, we can replace the thinnest geometrical layers with a thin layer approximation, provided that the difference in thickness is very large. This method can be used in many ...

Tubular Reactor

This tutorial example is very educational in explaining the PDE interface. It couples heat and mass balances to reaction kinetics. It is also a good example of scaling equations so as to create nice modeling geometries of systems with large aspect ratios. In a tubular gas reactor, chemical reactions take place in a stream of gas that carries reactants from the inlet to the outlet. Mass and ...

Using Meshing Sequences

COMSOL Multiphysics provides an interactive meshing environment where, with a few mouse clicks, you can easily mesh individual faces or domains. Each meshing operation is added to the meshing sequence. The final mesh is the result of building all the operations in the meshing sequence. This example demonstrates how to use the meshing sequence to create a mesh consisting of different element ...

Electrical Signals in a Heart

Modeling the electrical activity in cardiac tissue is an important step in understanding the patterns of contractions and dilations in the heart. The heart produces rhythmic electrical pulses, which trigger the mechanical contractions of the muscle. A number of heart conditions involve an elevated risk of re-entry of the signals. This means that the normal steady pulse is disturbed, a severe and ...

Shallow Water Equations

The Shallow Water equations are frequently used for modeling both oceanographic and atmospheric fluid flow. Models of such systems lead to the prediction of areas eventually affected by pollution, coast erosion and polar ice-cap melting. Comprehensive modeling of such phenomena using physical descriptions such as the Navier-Stokes equations can often be problematic, due to the scale of the ...

Quick Search