3D Density-Gradient Simulation of a Nanowire MOSFET

Application ID: 73771


This 3D model of a nanowire MOSFET employs the density-gradient theory to add the effect of quantum confinement to the conventional drift-diffusion formulation, without requiring excessively high computational costs. The oxide layer is simulated explicitly with geometric domains, and quantum confinement at the silicon-oxide interface is accounted for via a dedicated boundary condition. The density-gradient effective mass is anisotropic. Various selection utilities are used to simplify the assignment of physics settings and plot selections. The result matches well with the Id-Vg curves and electron density profiles published in the reference paper.

This model example illustrates applications of this type that would nominally be built using the following products: