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CHAPTER 4

MATHEMATICAL MODELING OF TWO DIMENSIONAL FLUID FLOW IN A

FLEXIBLE TUBE WITH INTERNAL FLEXIBLE LEAFLETS

Dynamics of fluid flow within flexible tube with internal flexible structures has

several biological and industrial application as mentioned in chapter 1. In this chap-

ter, the general mathematical formulation of the dynamics involving both solid (i.e.

flexible structures) and fluid domains is presented. Then, a specific case study of hu-

man veins and the venous valve found in the legs is introduced as an example where

this model can be applied.

The organization of the chapter is as follows. Section 4.1 gives a overview of the

general model for dynamics of fluid flow within a flexible tube with internal flexible

structures, here a pair of leaflets. Next, section 4.2 provides a definition of the problem

to be solved. Sections 4.3 and 4.4 develop a mathematical description of the general

problem. The case study is introduced in section 4.6. Lastly, section 4.7 summarizes

the important contributions of this chapter.

4.1 Overview of Fluid Flow in Flexible Tubes with Internal Flexible Structure

The dynamic behavior of Newtonian fluid flow in flexible tubes has been exten-

sively researched [14, 23, 28, 32, 35, 36, 37, 53, 57]. When the wall of a flexible tube

undergoes a deformation, the fluid flow within the tube deforms accordingly affecting

the local fluid flow properties [21]. In general, flexible structures exhibit anisotropic

elastic properties [22]. Previous theoretical and experimental studies by Pedley and

co-workers [6, 31, 35, 58], Kececioglu and co-workers [23, 24] and by Wijeratne and

Hoo [59] on fluid flow in a collapsible tube show that fluid flow tend to separate due

to the collapse of the tube wall alone, which may lead to localized pooling of the
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fluid. The presence of an internal flexible structure further promotes conditions for

flow separation [41] in addition to modulating fluid flow inside the tube.

With the understanding of the fluid flow behavior in a collapsible channel, this

study considers a structure that consists of a tube with internal symmetric leaflets

where the movements of the leaflets are determined by the magnitude and the di-

rection of the forces acting on them. Thus, the model development integrates the

fundamental principles of solid and fluid mechanics to describe the fluid/structure

interactions.

The mathematical representation of the system is formulated in a two dimen-

sional framework. Two domains, fluid and solid must be accounted for, and time to

represent unsteady behavior. The assumptions include: non-Newtonian fluid flow,

laminar fluid flow, and isothermal conditions. Additionally, the analysis will focus on

fluid flow behavior at different flow conditions and at different viscoelastic properties.

Numerical solutions provide a means of predicting the impact of these variables (i.e.

material properties of both fluid and structure) on the overall fluid dynamics. Such

insights can provide useful design and performance information to the medical and

pharmaceutical industries, material industries, and device manufacturers.

The fluid domain is modeled using momentum and mass conservation principles

[21] while the fluid viscosity is described using the concept of a non-Newtonian fluid.

The stresses and forces on the flexible structures and the boundary displacements

are related by Newton’s second law [22]. It follows that the mathematical descrip-

tion of this system involves multi-dimensional fluid dynamics and nonlinear solid

mechanics resulting in a system of nonlinear partial differential equations with mov-

ing boundaries. To address the non-stationary boundary conditions, an Arbitrary

Lagrangian-Eulerian (ALE) formulation is used to represent the governing equations

in the fluid domain [2]. Then, the numerical method of finite elements is employed to
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find a solution to the ALE formulation [60]. The ALE representation combines the

best features of both pure Lagrangian and pure Eulerian approaches. Thus, numerical

computation with the ALE formulation succeeds in reducing the computational bur-

den experienced with the pure formulations while capturing the fluid and structural

dynamics in the presence of significant distortions.

4.2 General Problem Definition

The geometry of the system resembles a flexible tube with two flaps embedded

within the tube. Each flap represents a leaflet (see Figure 4.1). Note that the tube

diameter is not constant. Specifically, the portion of the tube wall that contains the

leaflet expands to provide more space for movement of the leaflets. The free edge of

the leaflet protrudes towards the centerline of the tube and in the direction of fluid

flow (see Figure 4.1). In general, the leaflets open in the forward direction but only

up to a certain distance from the tube wall to represent the fully open position (see

top panel of Figure 4.2). The leaflets return to meet in the fully closed position (see

bottom panel of Figure 4.2) along the centerline of the tube. The motion of this tube

and leaflet system is analogous to the operation of a physical check valve where the

leaflets operate under pressure forces.

For the purposes of the mathematical formulation following assumptions are made.

4.2.1 Assumptions

• A two-dimensional, lateral cross-section of the tube and the leaflets (see Figure

4.3).

• The assumption of axial symmetry, which simplifies modeling one-half of the

cross-section.

• The system operates isothermally.
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Figure 4.1. Two dimensional schematic of the tube and leaflet. 1. Lumenal surface
of tube. 2. Medial surface of the leaflet. 3. Lumenal surface of the leaflet sinus.
4.Lateral surface of the leaflet. 5. Leaflet depth. 6. Tube diameter.
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Figure 4.2. Two dimension schematic of 1. open, 2. closing, and 3. closed phases.
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• Fluid is non-Newtonian (nonlinear stress-strain relationship) and incompress-

ible.

• The fluid flow is laminar.

• The flexible structures follow a linear stress-strain relationship.

• The material of the flexible structures is ultra-thin so that longitudinal and

circumferential bending can be neglected.

The fluid pressure forces and the viscous forces act on the inner tube wall surface

and on the leaflet surfaces causing them to move in the direction of the fluid flow.

And also when external compression is present, these compressions exert stresses on

the outer boundary of the tube wall resulting in tube wall displacement. Depending

upon the magnitude of the forces acting upon the tube wall the tube may distend

or collapse affecting the cross-sectional flow area. During the opening and closing

phases of the leaflets, fluid flow separation at the leaflet tip and fluid re-attachment

at the sinus wall also will occur.

X2
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r(x1,t)

h

u1(x1,x2,t)

u2(x1,x2,t)

Pd

(0,0)

P(x1,x2,t)
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u2(x1,x2,t)

Figure 4.3. Schematic of 1/2 (lateral cross-section) of the tube and leaflet used in
formulating the 2-D mathematical model. Solid lines: pressure and viscous forces.
Dashed lines: external forces.

4.3 Modeling the Fluid Domain

Figure 1.3 provides a guide to the modeling approach used in this section and

Figure 4.3 shows the schematic of half (lateral cross-section) of the tube and leaflet
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used in formulating the 2-D mathematical model. Fluid dynamics in this system

can be described by the conservation of momentum and mass principles. The model

development considers the fluid dynamics within the tube, which is in a upright or

standing position. Therefore, there is an accounting of the effects of static pressure

(due to the fluid column) and dynamic pressure forces. The conservation of fluid

momentum in two dimensions is given by,

∂ui

∂t
+ ui∇uj = −1

ρ

∂p

∂xi

+ gxi
+

1

ρ
∇2µui i, j = 1, 2

t > 0, 0 < x1 < L, 0 < x2 < r(x1, t)

(4.1)

The left hand side of the above equation accounts for the dynamic and convective

acceleration of the velocity components. The pressure, gravity, and viscosity effects

are represented by the first three terms on the right hand side of the equation. The

reader is referred to the nomenclature for the definition of the variables.

The initial and boundary conditions for the Equation 4.1 are as follows.

1. Entrance (i.e. at x1 = 0, , 0 ≤ x2 ≤ r(0, t), t ≥ 0) to the tube:

A fully developed parabolic axial velocity u1(0, x2, t), and zero radial fluid ve-

locity u2(0, x2, t), at the tube entrance, are assumed. Additionally the axial

velocity is assumed to be periodic.

u1(0, x2, t) = Um(r(0, t)− x2)(r(0, t) + x2) t ≥ 0 (4.2)

where r(x1, t) is the radius of the tube at axial distance x1 and time t.

Um =


Umax sin

(
2πt

Tc

)
(n− 1)Tc ≤ t ≤ 0.5(2n− 1)Tc, n = 1, 2, . . .

0 0.5(2n− 1)Tc ≤ t ≤ nTc

(4.3)
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Umax is the maximum axial centerline velocity and Tc is the time between open-

ing and closing of the leaflet.

u2(0, x2, t) = 0 t ≥ 0 (4.4)

2. Exit (i.e. x1 = L,0 ≤ x2 ≤ r(L, t)):

An exit fluid pressure conditions is prescribed.

p(L, x2, t) = Pd t ≥ 0 (4.5)

3. Internal boundary of tube wall (i.e. 0 < x1 < L, x2 = r(x1, t)):

Fluid velocities at the internal tube wall are assumed to be the same as the rate

of the displacement of internal tube wall in the respective directions.

u1(x1, r(x1, t), t) =
∂U

∂t
t > 0 (4.6)

u2(x1, r(x1, t), t) =
∂V

∂t
t > 0 (4.7)

where U(x1, x2, t) and V (x1, x2, t) are the flexible boundary displacements at

spatial coordinates x1 and x2 and time t in the axial and radial directions,

respectively.

4. Boundary of the internal flexible leaflet:

Fluid velocities at the leaflet boundaries are assumed to be the same as the rate
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of the displacement of the leaflet boundaries in their respective directions.

u1(x1, x2, t) =
∂U

∂t
t > 0 (4.8)

u2(x1, x2, t) =
∂V

∂t
t > 0 (4.9)

where U(x1, x2, t) and V (x1, x2, t) are the flexible boundary displacements at

spatial coordinates x1 and x2 and time t in the axial and radial directions,

respectively.

5. Centerline (i.e. at 0 < x1 < L , x2 = 0) :

Symmetric boundary conditions are assumed.

∂ui(x1, 0, t)

∂xj

= 0 i, j = 1, 2, t > 0, (4.10)

6. Initial conditions ( 0 < x1 < L, 0 < x2 < r(x1, 0)):

Everywhere within the tube both initial axial and radial velocities are assumed

to be zero.

ui(x1, x2, 0) = 0 i = 1, 2, t = 0, (4.11)

The conservation of mass is given by,

ρ∇ui = 0 (4.12)

i = 1, 2 0 ≤ x1 ≤ L 0 ≤ x2 ≤ r(x1, t)

where ρ is the fluid density.
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4.4 Modeling the Solid Domain

Figure 1.3 provides a guide to the modeling approach used in this section. The

solid domain consists of a flexible tube with two identical flaps (leaflets) embedded

within the tube. The tube and the leaflets have different material properties. In a

two-dimensional representation, this three-dimensional structure appears as a lateral

cross-section of the tube wall with the leaflet’s edge attached to the tube wall. As

a result of the combined effects of fluid pressure, viscous forces, and external com-

pression, the stresses are induced on the boundaries of these structures. The induced

stresses (i.e. normal and shear stresses) are related to the strains in the respective di-

rections by way of their elastic modulus. The strains are estimated by calculating the

relative displacements of an infinitesimal continuum. The stress-strain relationships

and the displacements are given by,

σx1 = Etεx1 (4.13)

σx2 = Etεx2 (4.14)

τx1x2 = Etεx1x2 (4.15)

εx1 =
∂U

∂x1

(4.16)

εx2 =
∂V

∂x2

(4.17)

εx1x2 =
1

2

(
∂U

∂x2

+
∂V

∂x1

)
(4.18)

where Et is the Young’s modulus of the tube material; σ and τ are normal and shear

stresses, respectively; and ε is the shear strain.
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4.4.1 Equations of motion for the tube wall

By considering the forces acting on an infinitesimal continuum of the tube, the

relationship between induced stresses, body forces, and the displacements of the con-

tinuum are given by,

t > 0, 0 < x1 < L, r(x1, t) < x2 < h+ r(x1, t)

ρtd
2U

dt2
=
∂σx1

∂x1

+
∂τx1x2

∂x2

+ Fx1 (4.19)

ρtd
2V

dt2
=
∂τx1x2

∂x1

+
∂σx2

∂x2

+ Fx2 (4.20)

where Fxi
, i, j = 1, 2 is the body force acting on the continuum and h is the thickness

of the tube. The terms on the left hand side of the equations represent the rate of

change in the momentum of the infinitesimal continuum in the respective directions.

The terms on the right hand side of the equations represent the induced normal

and shear stresses and the body forces acting on the continuum in their respective

directions.

By substituting Equations (4.13) to (4.18) into the above equations, a description

of the nodal displacements in the direction of x1 and x2 can be obtained,

t > 0, 0 < x1 < L, r(x1, t) < x2 < h+ r(x1, t)

ρtd
2U

dt2
= Et

[
∇2U +

∂2V

∂x1∂x2

]
+ Fx1 (4.21)

ρtd
2V

dt2
= Et

[
∇2V +

∂2U

∂x1∂x2

]
+ Fx2 (4.22)

The forces (fluid pressure and viscous forces) acting on the internal boundaries of the
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tube and on the leaflet boundaries are given by,

Fbxi
= Axi

(−pxi
+
(
∇(µŪ)

)
xi

+
(
∇(µŪ)

)′
xi

i = 1, 2

Ū ≡ [u1 u2]
′

(4.23)

The boundary and initial and conditions for Equations (4.21) and (4.22) are as

follows.

1. Boundaries at both ends of the tube (x1 = 0, L, r(x1, t) < x2 < h+ r(x1, t)) are

fixed in both directions (i.e. zero displacement).

U(0, x2, t) = 0 (4.24)

U(L, x2, t) = 0 (4.25)

V (0, x2, t) = 0 (4.26)

V (L, x2, t) = 0 t ≥ 0 (4.27)

2. Internal tube wall boundary (0 < x1 < L, x2 = r(x1, t)):

The forces acting on the internal tube wall are the sum of the fluid pressure and

viscous forces defined by Equation 4.23.

Fx1(x1, r(x1, t), t) = Fbx1
(4.28)

Fx2(x1, r(x1, t), t) = Fbx2
t > 0 (4.29)

3. External tube wall boundary (0 < x1 < L, x2 = h+ r(x1, t)):

All flexible tubes that have either biological or industrial applications are subject

to periodic distributed compression. This compression can be expressed in

the form of a displacement or in terms of an external force. In this study
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external compression in the x2 direction is introduced as a periodic distributed

displacement. There is no compression in the x1 direction.

U(x1, r(x1, t), t) = 0 t > 0 (4.30)

V (x1, r(x1, t), t) =


δmax sin

(
2πt

3

)
G (n− 1)Tc ≤ t ≤ 0.5(2n− 1)Tc, n = 1, 2, . . .

0 0.5(2n− 1)Tc ≤ t ≤ nTc

(4.31)

G = [x1(x1 − L)(x1 − L− 0.09)(x1 − L− 0.135)]/[L4]

4. Initial conditions (t=0, 0 < x1 < L, r(x1, t) < x2 < h+ r(x1, t)):

Initially, there are no stresses or displacements acting on the any of the bound-

aries of the tube. The initial conditions are given by,

U(x1, x2, 0) = 0 (4.32)

V (x1, x2, 0) = 0 (4.33)
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4.4.2 Equation for displacements of the leaflet

The axial and the radial displacements of the leaflet can be represented by a set

of partial differential equations given by,

ρtd
2U

dt2
= Et

[
∇2U +

∂2V

∂x1∂x2

]
+ Fx1 (4.34)

ρtd
2V

dt2
= Et

[
∇2V +

∂2U

∂x1∂x2

]
+ Fx2 (4.35)

t > 0

All boundaries of the leaflet that come in contact with the fluid is subject to the sum

of the pressure and viscous forces given by,

Fx1(x1, r(x1, t), t) = Fbx1
(4.36)

Fx2(x1, r(x1, t), t) = Fbx2
(4.37)

t ≥ 0

Note that all the leaflet boundaries are initially free of displacements.

4.5 Numerical Solution

A mathematical description of the flexible tube with two leaflets results in a system

of nonlinear partial differential equations with non-static boundary conditions. To

solve this system (see Appendix C), finite element numerical techniques with an

arbitrary Lagrangian-Eulerian (ALE) [2] formulation is implemented.

In general, a pure Lagrangian formulation, used mainly in structural mechanics, is

where each individual node of the computational mesh follows an associated material

particle during the deformation. The main disadvantage of this formulation is its
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inability to follow large deformations without re-meshing.

In contrast, a pure Eulerian formulation, usually use in fluid mechanics, is where

the computational mesh is fixed and the continuum moves with respect to the grid.

Even though the Eulerian description can capture large deformations this technique

requires very precise interface definition and has a large computational burden.

The ALE formulation capitalizes on the best features of both the Eulerian and

Lagrangian formulations while de-emphasizing the disadvantages. Specifically, the

ALE formulation not only allows the nodes of the computational mesh to move with

the continuum, but also the computational mesh can move in an arbitrarily specified

way to give a continuous re-zoning capability. As a result, the ALE formulation can

follow large distortions with less computations. In this work, the mathematical model

of the fluid domain is defined in the ALE framework; with the solid domain in the

Lagrangian framework. Femlab R© Multiphysics software, version 3.3a from Comsol

Inc., (Stockholm, Sweden) is used to carry out the numerical solution.

4.5.1 ALE description of the fluid domain

Since the deformation in the fluid domain can be quite significant as compared to

the solid domain, the computational mesh in the fluid domain cannot be held static to

capture the dynamic properties of the fluid domain material points. Additionally, the

computational procedure also must account for spatial changes to the computational

mesh.

In general the conservation of mass and momentum in the fluid domain are defined

by the Eulerian formulation (Equations (4.1) and (4.3)) where the fluid velocities are

the corresponding material velocities. Thus, the convective velocity is same as the

material velocity, ui. Due to deformation of this system, both the material and the

computational mesh points are moved relative to a spatial frame. When both material
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and mesh points move relative to a fixed spatial co-ordinate system the convective

velocity of a material point is the relative velocity of the material point with respect

to the mesh velocity.

To accommodate the mesh movement, the convective velocities in Equations (4.1)

that coincide with the material velocities are replaced by,

c = ui − v̂ i = 1, 2 (4.38)

where v̂ is the mesh velocity at a fixed mesh point. The difference, c, defines the

relative motion of the material point with respect to the mesh in the spatial frame

of reference. This adjustment requires redefining the conservation of momentum for

the fluid,

i, j = 1, 2 t > 0 0 < x1 < L 0 < x2 < r(x1, t)

∂ui

∂t
+ c∇uj = −1

ρ

∂p

∂xi

+ gxi
+

1

ρ
∇2µui i, j = 1, 2 (4.39)

4.5.2 Procedure to solve the fluid and solid models

The numerical solution of the equations that describe the fluid and solid interac-

tions are found using a suitable finite element method. The mathematical description

of the solid domain is in the Lagrangian framework while that of the fluid domain is

in the ALE framework. The procedure is as follows:

1. Solve Equations (4.39) and (4.3) to determine the spatial fluid properties.

2. Flexible boundary displacements are found by solving Equations (4.21), (4.22),

(4.34) and (4.35) using the results of step 1. Note that in the Lagrangian for-

mulation, the individual nodes follow the computational mesh. Thus, the solid

domain computational mesh displacements are the same as the nodal displace-
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ments.

3. Update the mesh points in the fluid domain using the Laplacian equation,

∇(v̂) = 0.

4. Return to step 1 and repeat for 0 < t < T∞.

4.6 Case Study

In this section a case study is presented to demonstrate the use of the models

developed previously. Note that a large part of this case study is adapted from [59].

4.6.1 Introduction

The flexible tube and the pair of leaflets are analogous to the vein and valve

(leaflets) found in legs of humans (see Figure 4.4). Proper blood flow in the veins

is important to ensure effective return of deoxygenated blood to the heart. A major

element of the human venous system is the presence of one-way, flexible, bicuspid

valves in the legs that allow antegrade blood flow while preventing retrograde flow

[44]. The venous valve consists of a pair of flexible leaflets, each attached at a single

point to the vein wall while their free edges protrude into the lumen of the vein. In

normal subjects, these leaflets are crescent shaped.

The veins in legs of humans are said to be thin walled [61], as such these veins

may collapse (through the force of external pressure) or distend (swell from internal

pressure) or extend (stretch) when vessel wall is subjected to excessive stresses. Blood

flow velocity in the veins in the legs is neither turbulent nor as pulsatile when com-

pared to blood velocity in the arteries. Thus, blood flow (hemodynamics) within the

human veins is analogous to low Reynolds fluid flow in a flexible channel. Further, it

is pointed out that blood is a non-Newtonian fluid.
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Figure 4.4. Three dimensional schematic of the vein and valve.

Evolution has evolved one-way flexible valves embedded within the vein to assist

in venous return (antegrade flow) to the heart. The valve leaflets are attached at

two points to the vein, hence they are said to be bicuspid venous valves. The motion

of the valves affect the hemodynamics of the venous return. It is well documented

that reduced venous blood flow is a strong function of the physiological integrity of

the venous valve competence and the muscle-vein pump. The primary objective of

this study is to understand the effect of fluid and external forces on the venous valve

and vein physiology. To accomplish this objective a two-dimensional computational

model of hemodynamic fluid flow within the human venous system will be developed.

Accurate models may be able to connect venous system incompetence and changes

in fluid flow behavior to the onset of pathophysiological venous limitations.

The competency of the venous system to maintain efficient antegrade flow has been

linked to venous diseases. Obviously, a fundamental understanding of this flexible

system can provide useful insights to the medical and pharmaceutical communities

who treat venous and cardiovascular diseases. Additionally, this study can be used to

investigate similar structures such as bronchial air ways, arteries [4, 5, 6] peristaltic
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tubes, and micro-fluidic devices [8, 9].

Blood exhibits non-Newtonian fluid behavior, giving rise to spatial variation in

the viscosity. Changes in the fluid properties such as viscosity or hematocrit (red

blood cell count) have a significant effect on the flow behavior of the fluid. The

viscosity of blood depends on many factors including composition, hematocrit volume,

plasma viscosity, temperature, and shear rate. In the case of temperature, a healthy

subject’s body maintains a constant temperature every where thus, it reasonable

to assume that blood flow in the venous system operates at isothermal conditions.

Hence, local temperature variations can be neglected. Viscous forces together with

the fluid pressure impose stresses on the boundaries of the flexible valve and vein wall

resulting in continuous displacement of their boundaries.

Two types of viscosity models are used. The first is the model by Carreau where

viscosity is defined as a function of shear rate [62]. The second is that of Zydney et

al. [63] to emphasize the dependence of viscosity on the volume of red blood cells,

shear rate, plasma viscosity, and body temperature [64] at low shear rates (< 50 s−1).

With these parameter dependent viscosity descriptions, the flow patterns behind and

in front of the valve leaflets at different operating conditions can be studied.

4.6.2 Viscosity models

In general viscoelastic fluids, power fluids, and generalized Newtonian fluids are

classified as non-Newtonian fluids [21]. The main feature of a generalized Newtonian

fluid is that the shear stress is a function of the shear rate at that time and is

independent of the history of the deformation. Two types of viscosity models are

used in the model development. The first is Carreau’s model [62] where viscosity is a

function of the shear rate. The second, contains the dependency of viscosity on the

constituents in the fluid. When the fluid is blood, the viscosity at low sheer rates is
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a function of the percent of red blood cells and plasma viscosity, which is a function

of the body’s temperature [63].

4.6.2.1 Carreau viscosity model

Blood viscosity (µ) is given by,

µ(γ̇) = µo

(
1 + (λγ̇)2

) n− 1
2

(4.40)

where the parameters {µo, n, and λ}, are material properties of the fluid and γ̇ is the

shear rate defined by,

γ̇ =
∂u1

∂x2

+
∂u2

∂x1

(4.41)

4.6.2.2 Viscosity model at low shear rates

At low shear rates, the percent solids (e.g. red blood cells) present in the fluid and

the viscosity of the fluid (e.g. plasma) affect the overall fluid viscosity. Quemanda [65]

provides a constitutive equation for blood viscosity using the principle of minimum

energy dissipation,

µ = µf

(
1− k

2
C

)−2

(4.42)

k =

ko + k∞

(
γ̇

γ̇c

)0.5

1 +

(
γ̇

γ̇c

)0.5 (4.43)

where γ̇c is the critical shear rate and the parameters, {ko, k∞, γ̇c} are functions of

the percent hematocrit (C).

An extensive correlation between the percent hematocrit (C) and the parameters,
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{ko, k∞, γ̇c} has been developed by [66],

ko = exp(3.874− 10.41C + 13.8C2 − 6.738C3) (4.44)

k∞ = exp(1.3435− 2.803C + 2.711C2 − 0.6479C3) (4.45)

γ̇c = exp(−6.1508 + 27.923C − 25.6C2 + 3.697C3) (4.46)

The plasma viscosity (µf ) is given by [67] ,

µf = µ37 exp [η(37− T )] (4.47)

where µ37 is a reference plasma viscosity at 37◦C, and η is a temperature coefficient.

4.6.3 Adaptation of the general model to the vein and valve system

Referring to both solid and fluid domain boundary conditions in the general case,

it is reasonable to use the same conditions but with relevant parameter values that

pertain to the vein and valve system.

4.6.3.1 Fluid domain

1. Internal vein wall surface and the boundaries ( i.e. surface) of the valve are

subject to the sum of the pressure and viscous forces exerted by blood.

2. In general vein contains multiple valves leading to segmentation of the vein.

The differences in the valves opening and closing frequencies causes periodic

flow of blood to each segment of the vein.
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4.6.3.2 Solid domain

1. In general, periodic muscle expansion and contraction in the human body im-

poses certain periodic displacements in the vein wall. Also due to the non-

uniform structure of the muscle, the compression on the vein segment may not

be uniform leading to non-uniform compression of the vein wall. Thus, it is rea-

sonable to assume that the applied external compression is periodic function.

4.7 Summary and Contribution

A model for a two-dimensional mathematical representation of the flexible tube

and flexible leaflet system is developed considering the fluid and solid domains that

comprise this system. The fluid domain assumes non-Newtonian fluid properties and

the solid domain assumes linear elastic properties. The motion of the leaflet and the

tube wall introduces non-stationary boundary conditions. To address this issue, a

numerical formulation of the fluid domain using an Arbitrary Lagrangian-Eulerian

ALE framework is used to re-formulate the Eulerian model of the fluid domain while

a Lagrangian frame work is used to model the solid domain. The human vein and

valve system is used to demonstrate the validity of the model.

The primary contribution of this work as follows.

• A two-dimensional mechanistic PDE model is derived to represent fluid flow

in the flexible tube and flexible leaflets using the conservation of mass and

momentum principles.

• The motion of the flexible valve leaflet and vein wall introduce non-stationary

system boundaries.

• The fluid domain is modeled using an ALE frame work to provide an accurate

numerical solution while tracking the moving boundaries.
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• Two viscosity models are used to represent the complex stress-strain relationship

of the fluid.
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4.8 NOMENCLATURE

C Hematocrit percentage

E Young’s Modules of the material (Pa)

Fbxi
Fluid forces acting on the flexible structures for directions i = 1, 2 (Pa)

Fxi
Body forces acting on the flexible structure for directions i = 1, 2 (Pa)

L Length of the tube (m)

Pd Down stream exit fluid pressure (Pa)

T Temperature (C◦)

Tc Cycle duration (s)

U Displacement in axial direction (m)

Umax Maximum axial velocity at entrance (m/s)

V Displacement in radial direction (m)

c Relative convective velocity of the material in spatial domain (m/s)

gxi
Fluid gravitational force (Pa)

h Thickness of the flexible tube (m)

p(x1, x2, t) Fluid pressure (Pa)

r(x1, t) Radius of the tube (m)

t Time (s)

u1(x1, x2, t) Axial fluid velocity (m/s)

u2(x1, x2, t) Radial fluid velocity (m/s)

x1 Axial coordinate (m)

x2 Radial coordinate (m)

γ̇ Fluid shear rate (s−1)

γ̇c Critical Shear rate (s−1)

δmax Maximum displacement of the tube (m)

εxi
Material shear strain

εxi
Material strain in i direction , for i=1,2
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η Temperature coefficient (1/C◦)

µ Dynamic blood viscosity (Pa/s)

µf Plasma viscosity (Pa/s)

µo Constant fluid dynamic viscosity (Pa/s)

µ37 Plasma viscosity at 37◦ C(Pa/s)

ρ Fluid density (Kg/m3)

ρs Material density of the flexible structure(Kg/m3)

σxi
Material stress in i direction , for i=1,2 (Pa)

τx1x2 Material shear stress (Pa)
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CHAPTER 5

NUMERICAL SOLUTION OF THE VEIN AND VALVE SYSTEM

Femlab R© Multiphysics software, version 3.3a from Comsol Inc. (Stockholm, Swe-

den), is used for numerical simulations. The parameter valves are given in Table 5.2.

A cast of a cadaver vein and valve is used to estimate the geometric parameters of

the system. A Matlab program is written using the Mathworks (Natick, MA) Matlab

c© image analysis toolbox version 7.0.1 to estimate the geometric dimensions of the

valve and the vein (see Appendix D). The dimensions are verified using calipers at

corresponding locations on the cast.

5.1 Estimation of geometric parameter values for vein and the valve

The geometric parameters of the vein and valve system are estimated from the

images of a cast of a harvested cadaver vein made by [68]. The harvested cadaver

vein is just filled with room temperature vulcanizing (RTV) silicone to fill the vein

without excess stretching and expansion. The filled vein is placed in a normal saline

solution to prevent desiccation. After twenty-four hours, the cast has solidified; the

cadaver vein is removed by cutting it away from the cast. From the cast it is possible

to (see Figure 5.1) see the demarcation of the valve leaflet positions. Images of the

cast are taken using a 7.2 Mega pixel digital camera. All images are taken with a

metric scale next to the cast so that both scale and cast are in a same focal plane.

The metric scale is used to calibrate the pixel distance to physical distance units.

Using custom code written for Matlab’s c© image toolbox, the geometric dimensions

of the valve and the vein are estimated.

First, the image captured by the digital camera is converted to a binary image.

Next the edges of the image are detected using the Sobel edge detection technique
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Figure 5.1. Cast of a harvested cadaver vein and valve. Note, the valve leaflets are
numbered and marked with black ink to emphasize their location.

[69]. The principle of Sobel edge detection technique locates where discontinuities

of the pixel values exist. These discontinuities in the pixel values are detected by

estimating the first derivative of the pixel values in the horizontal (x) and vertical

(y) directions. Once the edges of the vein and valve are detected (see Figure 5.2),

the pixel distances between the edges are estimated. The metric scale in the image

is used to determine the resolution. From the image resolution, physical dimensions

of the object can be determined from the number of pixels between the feature being

measured, e.g. the edges of the diameter. In the image shown in Figure 5.1, 120

pixels correspond to 1 cm, thus the resolution of the image is 0.0083 cm/pixel. Pixel

distances are converted to standard distance units by multiplying the number of pixels

by the resolution. Table 5.1 lists the estimated average values and the corresponding

standard deviation for a total of n=3 valves shown in Figure 5.1. These estimated

values are within the agreement of the calliper measurements.

5.2 Numerical simulation

The fluid and solid domain governing equations for the vein and valve system are

solved by applying a finite element numerical method. Here, the fluid velocities and
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Table 5.1. Geometric parameter values.

Parameter Value Mean Stand. Dev.

(mm) (mm) (± mm)

Vein diameter: distil 9.5 9.5 0.5
Vein diameter: proximal 8.65 9.8883 1.173
Valve depth 14 14 1
Sinus height 7.7 7.733 1.702

Table 5.2. Model parameter values [62, 63, 67, 70].

Description Variable Value Units

Tube length L 0.18 m

Tube inlet radius r(0, t) 4.0×10−3 m

Leaflet depth ds 0.015 m

Fluid density ρ 1060 Kg/m3

Inlet max axial velocity Umax 0.4 m/s

Exit fluid pressure Pd 1000 Pa

Fluid dynamic viscosity µo 2.2×10−3 Pa/s

Tube material density ρt 960 Kg/m3

Leaflet material density ρs 500 Kg/m3

Tube thickness h 5×10−4 m

Leaflet thickness hs 2.5×10−5 m

Young’s Modulus- tube Et 3.3×106 Pa

Young’s Modulus- leaflet Es 15×106 Pa

Tube max displacement δmax 2.5×10−4 m

Plasma viscosity at 37◦C µ37 1.4×10−3 Pa/s

Temperature coefficient η 0.021 ◦C−1

Temperature T 28 ◦C

Cycle duration Tc 3 s
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Figure 5.2. Vein and valve edges extracted from the image

the solid domain displacements are expressed using quadratic shaped functions while

the fluid pressure is expressed using linear shaped functions. For numerically accurate

and convergent results, it is important to guarantee that the computational mesh is

less distorted at each successive solution step. When moving objects are present in

the computational domain, the Comsol support 1 suggests using a sectioned domain

and meshing the individual sections such that the number of nodal points are matched

along the sectional boundaries. This technique allows control of the individual mesh

deformation. In this model, the number of nodal points along the section and external

boundaries are pre-prescribed to control the number of mesh elements in each section.

This approach resulted in both triangular and quadrilateral mesh elements. Table 5.3

lists the mesh statistics of the base model.

Table 5.3. Mesh statistics.

Parameter Value

Number of mesh elements 2797
Number of triangular elements 260
Number of quadrilateral elements 2537
Solution time 8 minutes

Simulation results with refined number of mesh elements are carried out to in-

1Solution No :970, “Improving convergence for ALE and parameterized geometry.”
http://www.comsol.com/support/knowledgebase/970/.
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vestigate the quality of the results. In this case the number of mesh elements has

been increased to 3524 (26%) at the expense of total solution time of 15 minutes

(almost doubled). The results obtained using the refined mesh model (not shown

here) estimates a 6% increase in the maximum displacement of the leaflet free edge

when compared to base case model. A comparison between the fluid domain solu-

tion with the refined mesh and the solution from the base case yield numerically less

significant values (changes are in the range of 1%-4%). In general, the simulation

results obtained with the base case model are better able to produce results that

more closely match (discussed in the proceeding sections) the in vivo results reported

by Lurie et al. [41]. Infinite mesh refinement is not possible when large deformations

are present. If the deformations become too large, some of the mesh elements may

become inverted. This affects the accuracy of the solution and eventually the solution

will cease to converge.

5.3 Results and Analysis

5.3.1 Results: Baseline

The fluid flow dynamics and solid mechanics pertaining to the base case is pre-

sented first.

5.3.1.1 Fluid flow dynamics

Figures 5.3 to 5.6 show the streamline patterns during a single cycle at different

phases of the closing to opening cycle when the tube segment is in a vertical position.

From these figures, one can observe the formation and break away of the vortices at

the leaflet edge during the opening, equilibrium and closing phases of the cycle. This

analysis is carried out by employing the second viscosity model with a hematocrit

value of 30% solids.

The duration of one complete cycle is about 3.0 seconds. The closed phase lasts
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about 0.2 seconds, the opening phase about 0.3 seconds, the equilibrium phase is

about 1.5 seconds, and the closing phase is about 1 second. The durations of the

opening and equilibrium phases are in satisfactory agreement with the in vivo studies

of [41]. However, the duration of the closing and closed phase are different. The

duration of the closed phase is reduced by 80% and and that of the closing phase has

increased by about 75% when compared to the reported results of Lurie et al. [41].

These differences are attributed to the parameter values used in the model as well

as the frequency of the external compression. In spite of these timing differences,

the model is able to capture the fluid dynamics of the vein and venous valve system

confirming the formation of vortices that modulate the leaflet motion.

Figure 5.7 shows the axial velocity profile in the open phase. It can be seen

that a higher fluid velocity exists in between the leaflets due to the small flow area.

Additionally inside the leaflet (or valve sinus) the fluid velocity is much less compared

to anywhere else in the fluid domain. This lower fluid velocity results from vortex

formation inside the sinus. The corresponding Reynolds number distribution is given

in Figure 5.8. This result confirms a low Reynolds number flow.

Figures 5.9 and 5.10 show the fluid velocity patterns at different axial positions at

the center line. These results indicate the periodic nature of the fluid velocity. The

range of the approximate maximum centerline axial fluid velocities at the distal end,

between the leaflets, and at the proximal end are listed in Table 5.4. These values

are in the range reported by [41].

Panels on Figures 5.11 and 5.12 show the fluid pressure distribution around the

leaflet and also at proximal and distal sides of the tube during different times of

the leaflet cycle. It has been observed that during the open and opening phases the

pressure around the leaflet is about 10% to 20% higher than the pressure distribution

around the leaflet during close and closed phases. The arrow lines indicates the fluid
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Time =1.5

Total displacement [m]

Streamline: Velocity  [m/s]

Time =1.7

Total displacement [m]

Streamline: Velocity  [m/s]

Figure 5.3. Fluid streamlines during the closed phase of the cycle. Top: time = 1.5.
Bottom time = 1.7. Scale on the right represents displacement. Abscissa: Diameter
of tube in meters. Ordinate: Length of tube in meters.
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Time =1.8

Total displacement [m]

Streamline: Velocity  [m/s]

Time =2

Total displacement [m]

Streamline: Velocity  [m/s]

Figure 5.4. Fluid streamlines during the opening phase of the cycle. The scale on
the right represents displacement. Abscissa: Diameter of tube in meters. Ordinate:
Length of tube in meters.
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Time =2.9

Total displacement [m]

Streamline: Velocity  [m/s]

Time =3.9

Total displacement [m]

Streamline: Velocity  [m/s]

Figure 5.5. Fluid streamlines during the equilibrium phase of the cycle. The scale on
the right represents displacement. Abscissa: Diameter of tube in meters. Ordinate:
Length of tube in meters.
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Time =4

Total displacement [m]

Streamline: Velocity  [m/s]

Time =4.5

Total displacement [m]

Streamline: Velocity  [m/s]

Figure 5.6. Fluid streamlines during the closing phase of the cycle. The scale on
the right represents displacement. Abscissa: Diameter of tube in meters. Ordinate:
Length of tube in meters.
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Time=0.5 

Velocity [m/s]

Figure 5.7. Axial fluid velocity at the open position. The scale on the right is the
fluid velocity. Abscissa: Diameter of tube in meters. Ordinate: Length of tube in
meters.

Time=0.5 

Figure 5.8. Reynolds number flow distribution. The scale on the right is the Reynolds
number. Abscissa: Diameter of tube in meters. Ordinate: Length of tube in meters.
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Figure 5.9. Centerline fluid velocity at different axial positions. Top: entrance (x=0
m, y=0 m). Middle: distal (x=0.05 m, y=0 m). Bottom: distal (x=0.065 m, y=0
m).
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Figure 5.10. Centerline fluid velocity at different axial positions. Top: between the
edge of the leaflet (x=0.073 m, y=0 m). Middle: proximal (x=0.077 m, y=0 m).
Bottom: exit (x=0.18 m, y=0 m).
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Table 5.4. Fluid velocity at different axial positions.

Position Range (cm/s)

Distal 8 – 15
In-between 11 – 20
Proximal 13 – 15

flow directions.

5.3.1.2 Motion of the leaflet free edge and vortex shedding at the leaflet free edge

The motion of the leaflet occurs from 0 to 0.8 cm/s (see top panel of Figure 5.13).

In the open phase, the free edge of the leaflet is about 0.35 cm from the centerline

(see bottom panel of Figure 5.13). It has been observed that there is deformation in

the tube during each cycle. However, this deformation is much less compared to the

displacement of the leaflet, i.e the maximum tube wall displacement is about 25%

of the maximum displacement of the leaflet edge (see Figures 5.3 to 5.6). Note that

the scale of the figures prevents observing this deformation. The graphs in Figures

(5.3 to 5.6) clearly show the formation of a vortex during the opening phase. During

the equilibrium phase vortex shedding is observed, which can be attributed to the

existence of self-excited oscillations.

The graphs in Figures 5.14 and 5.15 show the variation in the fluid shear rate

at different positions of the leaflet. The highest variation of the fluid shear rate

is observed at the medial side of the free edge of the leaflet (see bottom panel of

Figure 5.15). This type of high variation in the fluid shear rate is expected at the

medial side of the free edge of the leaflet due to vortex shedding. Referring to the

motion of the leaflet’s edge (the bottom panel of Figure of 5.13) it appears that the

oscillations are low frequency oscillations. For the parameter values used, no high
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Time=2.5

Pressure [Pa]

Arrow: Velocity [m/s]

Time=3.3

Pressure [Pa]

Arrow: Velocity [m/s]

Figure 5.11. Pressure distribution. Top: opening phase. Bottom: open phase. Scale
on the right represents pressure. Abscissa: Diameter of tube in meters. Ordinate:
Length of tube in meters.
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Time=3.8

Pressure [Pa]

Arrow: Velocity [m/s]

Time=4.5

Pressure [Pa]

Arrow: Velocity [m/s]

Figure 5.12. Pressure distribution. Top: closing phase. Bottom: closed phase. Scale
on the right represents pressure. Abscissa: Diameter of tube in meters. Ordinate:
Length of tube in meters.
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frequency oscillations are observed. Furthermore, the magnitude of the shear rate

variation at the inner points of the medial side of the leaflet (see bottom panel of

Figure 5.14) is much less when compared to the corresponding point in the lateral

side of the leaflet (see top panel of Figure5.14). Low fluid shear rate is indicative of

the occurrence of small magnitude oscillations with less spatial variation and almost

no vortex shedding.

5.3.1.3 Stress analysis on the leaflet free edge

As the fluid flows from distal to proximal, the free edge of the leaflet move vertically

up and down performing the valve opening and closure mechanisms. During the

valve opening phase there are flow separation and vortex formation; and during the

equilibrium phase, vortex shedding at the leaflet free edge. These events induce

normal and shear stresses upon the free edge and ultimately cause motion of the

leaflet’s free edge (see bottom panel of Figure 5.13). The graphs in Figure 5.16 show

the normal stresses acting in the radial and axial directions and surface shear stress

acting on the free edge of the leaflet. All these stresses exhibit periodic behaviors.

The normal stresses (see top panel of Figure 5.16) are synchronized together but, the

shear stresses (see bottom panel of Figure 5.16) lag by about 1.5 seconds.

5.3.1.4 Normal and shear stress analysis on the leaflet and sinus wall

Figures 5.17 and 5.18 show the total normal stress acting at the different positions

of the leaflet on the medial and lateral sides of the leaflet, respectively. Both figures

indicate that the highest stress occurs at the middle of the leaflet. Consider a time

duration of 1.5 to 4.5 seconds. The time duration is equal to one full cycle.

Referring to Figures 5.17 and 5.18, it can be seen that as the valve starts opening,

the total normal stress has accumulated at all positions of the valve during the opening

phase (until about 1.8 s). Also during the next 1.5 s it can be seen that there is an
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Figure 5.13. Top: motion of the leaflet’s free edge. Bottom: position of the leaflet’s
free edge.
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Figure 5.14. Fluid shear rate at lateral and medial sides at the middle point of the
leaflet. Top: lateral side. Bottom: medial side.
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Figure 5.15. Fluid shear rate at lateral and medial sides of the free edge of the leaflet.
Top: lateral side. Bottom: medial side.
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overall increase in the normal stress at all points on the leaflet, which coincides with

the duration of the equilibrium phase. A decrease in the induced stress in the leaflet

is observed during the closing phase (i.e about 4.2 s of the cycle time). Then during

the closed phase, stress starts to increase once again. Stresses at middle of the leaflet

and at the free edge exhibit synchronized induced total stress profiles. These types of

profiles for stress variation on the leaflet can be expected due to the two-dimensional

model of the system. The absence of circumferential tension in the 2D model (which

is present in the 3D model) may affect the total stress pattern at each point in the

leaflet. Figure 5.19 shows the total normal stress variation acting on the edges and

also at the middle of the sinus wall. It can be observed that the largest stresses

(magnitude) occur at the middle of the sinus wall. However, these values are much

less in magnitude when compared to the normal stress values induced in the leaflet.

5.3.2 Results:Impact of fluid viscosity

5.3.2.1 Comparison of the viscosity models

Figures 5.20 and 5.21 compare the effect of different viscosity models on the closing

and opening of the leaflet. The left panel shows the leaflet closing and opening based

on viscosity model 1 in contrast to the right panel whose results are based on viscosity

model 2. In both cases, it can be seen that inside the leaflet sinus the fluid viscosity is

the highest. With the second viscosity model, a wider viscosity range is found inside

the sinus cusps. Outside the sinus the viscosity distribution is similar in both cases.

This effect can be attributed to fluid pooling inside the cusps due to reduced fluid

velocities and also due to the formation of vortices. As a result the displacement of

the leaflet estimated by the first viscosity model is about 0.38 cm from the centerline

as compared to a displacement of 0.35 cm estimated by the second viscosity model.

Both models exhibit similar viscosity distributions at the medial side of the leaflet.
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It is reasonable to conclude that the magnitude of the viscous forces acting on the

medial side of the leaflet is similar in both cases. However, the lateral side of the

leaflet experiences different size viscous force in each case. A higher viscous force is

estimated by the second viscosity model thereby creating a greater resistance to the

leaflet displacement on the lateral side.

5.3.2.2 Effect of solids on the fluid dynamics

Figure 5.22 shows the effect of changes in the solid content of the fluid. In the

case of blood, this change represents a change in the hematocrit value. The model

results presented so far assumes 30% solids. The leaflet displacement (open position)

is estimated at about 0.35 cm from the centerline. However, with an increase from

30% to 50%, the displacement from the centerline is 0.3 cm or a 14% reduction. As

expected an increase in the solids content increases the viscosity of the fluid creating

higher viscous forces inside the sinus which in turn restricts the motion of the leaflet.

5.3.3 Result: Sensitivity analysis of the system’s elasticity

The elasticity of the leaflet and the tube wall play a major role in the geometric

configuration of the entire system at any given time. The magnitude of the Young’s

moduli of the system is an indication of the system’s ability to extend or collapse

under the imposed fluid and external forces. The Young’s moduli of the leaflet and

tube wall are very different (different order of magnitude). According to in vivo mea-

surements of Ackroyd et al. [70] the leaflet material exhibits higher elasticity modulus

as compared to that of the tube wall material. In general, these elasticities exhibit

anisotropic properties. For the present computational purpose, isotropic properties

are assumed for both leaflet and the tube wall.

In order to estimate the impact of the flexibility of the leaflet and the tube wall

on the overall dynamics of the system, the following procedure is adopted.

99



Texas Tech University, Nilmini Saumya Wijeratne, May 2008

5.3.3.1 Design of experiment procedure

The methodology for the selection of the parameter values for the elastic modulus

is adopted from the procedure suggested by Cho et al. [71]. This procedure uses a

Monte Carlo method to select the parameter values that ensure feasible results.

1. Young’s moduli for both leaflet and the tube wall are assumed to have a normal

distribution. The mean and the standard deviation for each material is given

in Table 5.5.

Table 5.5. Statistics of the leaflet and tube wall elastic moduli.

Component Mean (Pa) Standard Deviation (Pa)

Leaflet 15×106 10×106

Tube wall 3.3×106 2.5×106

2. It is necessary to determine for any selected combination of elastic moduli, whether

it possible to obtain an accurate, convergent solution. Therefore the selection

of the combination of the elastic moduli are forced to be in feasible regions

within each distribution that ensure convergent and accurate results. Thus, an

objective function is defined based on the output variable of the dynamic model.

Here, the vertical displacement of the leaflet free edge is selected as the output

variable to be used in the objective function. The objective function is given

by,

Fobj =

Tspan∑
i=1

(v2baseline
(i)− v2current(i))

2 . (5.1)

where Fobj is constrained by a pre-determined threshold value given for the

system. The variables, v2baseline
(i), and v2current(i), define the displacements

of the leaflet’s free edge at time i for the baseline case and the current case,

respectively.
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3. The constraint (i.e. threshold value) for the objective function is determined

using the information obtained from test data. The procedure to determine the

threshold value is as follows. With a set of initial test data (i.e. combination of

randomly selected elastic moduli from each distribution) the system of governing

equations for the leaflet and the tube is solved and the leaflet’s free edge motion

is observed. These data together with the baseline data are used to estimate the

objective function for each case. These data are used to establish a relationship

between the two elastic moduli and the objective function value. By analyzing

the objective function value and the corresponding leaflet free edge displacement

for each case, the threshold value is set at 10−4m2. Thus, any combination of

the elastic moduli that produce an objective function value less than or equal

to the threshold value is used in the sensitivity analysis.

Once the combination of elasticity moduli that satisfy the constraint value of the

objective function 5.1 is selected, these parameter values are used in the sensitivity

analysis. The elastic moduli used in the sensitivity analysis and their percentage

change from the respective nominal values are listed in Table 5.6. A negative value

indicates a decrease in the current value relative to the baseline value.

Figures 5.23 to 5.26 show the leaflet free edge displacement against the baseline

for each case. It is observed that these changes affect the leaflet closure. Cases 2, 3,

6, and 7 are when both elastic moduli increase in magnitude. It can be seen from

these figures, that the leaflet may not close properly leading to undesired retrograde

flow. Referring to the corresponding percentage increase in the elastic moduli, it can

be deduced that the impact on the overall displacement of the leaflet’s free edge due

to an increase in the leaflet elasticity is more significant than changes in the tube

material elasticity.
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Case 8 considers the impact on the displacement of the leaflet’s free edge due to

decreases in both elastic moduli. The results show that the leaflets close properly

and also that the maximum opening of the leaflet increases relative to the base case.

Table 5.7 lists the percent change (relative to the base case) in the maximum and

minimum values that the leaflet’s free edge experiences during the closing phase. This

analysis confirms that a decrease in the flexibility of the leaflet and the tube material

affects closing of the leaflet.

Table 5.6. Leaflet and tube wall elastic moduli.

Elastic moduli (×107Pa) Percent change (%)

Case Tube wall Leaflet Tube wall Leaflet

1 0.1146 1.7467 -65.2727 16.4467
2 0.3480 3.2327 5.4545 115.5133
3 0.8073 1.9945 144.6364 32.9667
4 0.1734 1.7279 -47.4545 15.1933
5 0.2742 3.3027 -16.9091 120.1800
6 0.3909 1.7041 18.4545 13.6067
7 0.5118 2.0924 55.0909 39.4933
8 0.2128 1 .342 -35.5152 -10.5333

Table 5.7. Maximum and minimum displacement from the base case.

Case Max (%) Min (%)

1 - 1.7511 -209.0136
2 - 6.4670 - 538.2478
3 - 2.2241 - 296.0078
4 - 2.5312 - 166.7838
5 - 3.4855 - 543.6144
6 - 2.3131 - 148.4222
7 - 4.6379 -393.2503
8 7.0549 180.5705
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Figure 5.16. Normal and shear stresses at the free edge of the medial side of the
leaflet. Top: normal stress in radial (dash-dot) and axial (solid) directions. Bottom:
shear stress.
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Figure 5.17. Total normal stress at different positions on the medial side of the leaflet.
Top: at the vessel wall. Middle: middle of the leaflet. Bottom: free edge of the leaflet.
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Figure 5.18. Total normal stress at different positions at the lateral side of the leaflet.
Top: at the vessel wall. Middle: middle of the leaflet. Bottom: free edge of the
leaflet. 105
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Figure 5.19. Total normal stress at different positions at the sinus wall. Top: edge
nearest to the distal side. Middle: middle of the sinus wall. Bottom: edge nearest to
the proximal side. 106
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Time=2.5

Dynamic viscosity [Pa-s]

Arrow: Velocity [m/s]

Time=2.5

Dynamic viscosity [Pa-s]

Arrow: Velocity [m/s]

Figure 5.20. Viscosity distribution during the opening phase. Top: viscosity model 1.
Bottom: viscosity model 2. Abscissa: Diameter of tube in meters. Ordinate: Length
of tube in meters.
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Time=4.6

Dynamic viscosity [Pa-s]

Arrow: Velocity [m/s]

Time=4.6

Dynamic viscosity [Pa-s]

Arrow: Velocity [m/s]

Figure 5.21. Viscosity distribution during the closed phase. Top: viscosity model 1.
Bottom: viscosity model 2. Abscissa: Diameter of tube in meters. Ordinate: Length
of tube in meters.
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Time=2.5

Dynamic viscosity [Pa-s]

Arrow: Velocity [m/s]

Time=2.5

Dynamic viscosity [Pa-s]

Arrow: Velocity [m/s]

Figure 5.22. Effect due to different percent solids. Top: 30%. Bottom: 50%. Abscissa:
Diameter of tube in meters. Ordinate: Length of tube in meters.
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Figure 5.23. Sensitivity of the elasticities of the tube and leaflet. (Solid line: Base
case. Dash line: Trial case.) Top: case 1. Bottom: case 2.
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Figure 5.24. Sensitivity of the elasticities of the tube and leaflet. (Solid line: Base
case. Dash line: Trial case.) Top: case 3. Bottom: case 4.
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Figure 5.25. Sensitivity of the elasticities of the tube and leaflet. (Solid line: Base
case. Dash line: Trial case.) Top: case 5. Bottom: case 6.
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Figure 5.26. Sensitivity of the elasticities of the tube and leaflet.(Solid line: Base
case. Dash line: Trial case.) Top: case 7. Bottom: case 8.
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5.3.4 Result: Boundary conditions impact analysis

It has been observed that certain frequencies of the entering fluid velocity and

the external compression applied to the tube wall influence the dynamics of the fluid

within the tube and hence the leaflet motion. Panels in Figure 5.27 show the motion of

the leaflet free edge at different combinations of boundary conditions for the entering

fluid velocity and the external tube wall compression against that of the base case.

Table 5.8 lists the boundary conditions used in each case. The periodic functions

that are used to represent the boundary conditions and the compression function are

given by,

F1 =


sin

(
2πt

Tc

)
(n− 1)Tc ≤ t ≤ 0.5(2n− 1)Tc n = 1, 2, . . .

0 0.5(2n− 1)Tc ≤ t ≤ nTc

F2 =


sin

(
2πt

Tc

)
(n− 1)Tc ≤ t ≤ 0.33(2n− 1)Tc n = 1, 2, . . .

0 0..33(2n− 1)Tc ≤ t ≤ nTc

F3 = [x1(x1 − L)(x1 − L− 0.09)(x1 − L− 0.135)] /[L4]

where Tc represents the time to complete one leaflet cycle (i.e. the duration to open

and close the leaflet.).

Table 5.8. System conditions.

Case Inlet fluid velocity Tube wall compression

1 UmaxF1 δmax(−F2)F3

2 UmaxF2 δmax(−F1)F3

3 UmaxF2 δmax(−F2)F3

where Umax is the maximum centerline entrance velocity of the fluid, and δmax is the
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maximum displacement imposed on the tube wall due to external compression. All

simulations are carried out with δmax equal to 0.002 m.

Referring to top panel in Figure 5.27, it can be deduced that a decrease in the

duration of the tube wall compression increases the oscillatory motion of the leaflet.

Additionally, the maximum opening (length) of the leaflet increases by 20% and the

closing (length) of the leaflet decreases by 150% relative to the base case.

The middle panel of Figure 5.27 shows the leaflet’s free edge motion against that of

the base case due to a decrease in the frequency of the entering fluid flow velocity. An

increase in the oscillatory motion of the leaflet free edge can been observed. However,

the maximum displacement of the leaflet’s free edge has increased significantly (about

94%) compared to the base case. The closure of the leaflet is not affected.

A decrease in the frequency of the entering fluid velocity and the tube compression

increases the leaflet opening and the oscillatory motion of the leaflet (see bottom panel

of Figure 5.27). In this case, the maximum opening distance of the leaflet is increased

by 81% and complete closure of the leaflet can be observed.

This sensitivity analysis reveals that the influence of variations in the fluid velocity

frequency has a greater impact on the leaflet motion than variations in the frequency

of the external compression of the tube wall.

5.4 Double Valve and Vein System

In general, veins in the lower extremities of the human body contain multiple

valves arranged in a sequential manner [1]. In this section, the dynamics of the fluid

flow in a double valve and tube system is investigated. The mathematical formulation

of the fluid and solid domain are the same as in the case of a single leaflet and tube

system described in chapter 4. Additionally the model parameter values remain the

same. The dimensions of this model are listed in Table 5.9.
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Table 5.9. Dimensions of the double leaflet and tube system

Parameter Value(cm)

Tube diameter 0.4
Tube thickness 0.05
Tube length 25
Valve depth 0.9
Sinus height 0.22

To introduce a non-uniformity in the tube wall compression, segments of the tube

wall that contain a leaflet are subjected to different compression frequency. The

external tube wall boundary conditions are given by,

δmaxD1D3 0 ≤ x1 ≤ Lv1

δmaxD2D3 Lv1 < x1 ≤ Ld

(5.2)

where Lv1 is the length of the tube up to the end of sinus wall (i.e. 0 < Lv1 =

0.0825m < Ld = 0.25m) of the first valve and and Ld is the length of the tube.

D1 =


sin

(
2πt

Tc

)
(n− 1)Tc ≤ t ≤ 0.5(2n− 1)Tc n = 1, 2, . . .

0 0.5(2n− 1)Tc ≤ t ≤ nTc

D2 =


sin

(
2πt

Tc

+
π

2

)
(n− 1)Tc ≤ t ≤ 0.33(2n− 1)Tc n = 1, 2, . . .

0 0.33(2n− 1)Tc ≤ t ≤ nTc

D3 = [x1(x1 − Ld)(x1 − Ld − 0.0635)(x1 − Ld − 0.125)(x1 − Ld − 0.1875)] /[L5
d]

(5.3)

This analysis is carried out using the second viscosity model and a 30% solid

percent. Figures 5.28 to 5.29 show the fluid flow velocity and streamline pattern in
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the double leaflet system during the opening and closing phases of each valve. The

formation of vortices in the leaflet sinus during the opening phase in both leaflets can

be observed. The leaflet cycle (i.e. duration from opening to closed position) for both

leaflets is 3 seconds.

Figure 5.30 shows the displacement of the each leaflet’s free edge. It has been

observed that the displacement of the second leaflet lags behind that of the first.

The maximum displacement of the free edge of the second leaflet is about 17% less

than that of the first leaflet. This type of displacement is attributed to the varying

compression frequencies exerted on different segments of the tube’s external wall and

also to the influence of preceding leaflet.

5.5 Summary

This study presented the simulation results of a two-dimensional first-principles

model that describe the fluid dynamics of a non-Newtonian fluid within a flexible

tube that contained a flexible pair of symmetrical leaflets. The tube and leaflets are

surrogates for the human vein and venous bicuspid valve found in the lower legs. The

general model was presented in chapter 4.

The model enabled an estimation of the extent of valve opening and closing as a

function of fluid dynamics and fluid-structure interactions. The Femlab R© environ-

ment was used to solve the model and its capabilities permitted visualization of the

formation of vortices and their role in flow regulation and leaflet motion. Stress anal-

ysis on the leaflet enabled the identification of those locations that were under higher

stresses. A sensitivity analysis using different hematocrit (% solids) values showed

the impact of blood thinning or thickening (viscosity) on the motion of the leaflet.

A parameter sensitivity analysis on the elasticity of the system confirms that

an increase in the elastic modulus of the leaflet affect the closing of the leaflet. A
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sensitivity analysis on the boundary conditions involving entering fluid velocity and

external compression of the tube wall reveal that the fluid entrance velocity has a

greater impact over the dynamics of the leaflet motion than the compression frequency

of the tube wall.

This kind of information can be valuable to the medical and pharmaceutical com-

munities. Thus, this type of fundamental model can provide a means to investigate

different fluid flow dynamics and direct experimental work for validation and further

investigations. The contributions of this chapter are as follows.

• A two-dimensional model developed in chapter 4 is used to study the dynamics

of the human vein and valve system in the legs. The model and solution envi-

ronment permitted the spatial and temporal variation in the fluid and structural

variable properties in all locutions of the system,including the locations where

these properties cannot be estimated by experimental means with out affecting

the integrity of the system.

• It is important to understand the nature of vortex shedding at the leaflet edge

, as excessive shedding may damage the leaflet edge. Damaged leaflet edges

may trigger the process of thrombi (blood clots) formation in a later stage.

The simulated results showed the formation and breakaway of vortices (vortex

shedding) at the leaflet’s free edge at normal flow and tube conditions.

• Due to the model’s flexibility the model was used to predict the impact of several

variables and conditions on the overall dynamics of the system.
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5.6 NOMENCLATURE

Fbxi
Fluid forces acting on the flexible structures for directions i = 1, 2 (Pa)

Fxi
Body forces acting on the flexible structure for directions i = 1, 2 (Pa)

Pd Down stream exit fluid pressure (Pa)

T Temperature (C◦)

Tc Cycle duration (s)

U Displacement in axial direction (m)

Umax Maximum axial velocity at entrance (m/s)

V Displacement in radial direction (m)

c Relative convective velocity of the material in spatial domain (m/s)

gxi
Fluid gravitational force (Pa)

p(x1, x2, t) Fluid pressure (Pa)

t Time (s)

u1(x1, x2, t) Axial fluid velocity (m/s)

u2(x1, x2, t) Radial fluid velocity (m/s)

x1 Axial coordinate (m)

x2 Radial coordinate (m)

γ̇ Fluid shear rate (s−1)

γ̇c Critical Shear rate (s−1)

δmax Maximum displacement of the tube (m)

εxi
Material shear strain

εxi
Material strain in i direction , for i=1,2

µ Dynamic blood viscosity (Pa/s)

µf Plasma viscosity (Pa/s)

µo Constant fluid dynamic viscosity (Pa/s)

µ37 Plasma viscosity at 37◦ C(Pa/s)

σxi
Material stress in i direction , for i=1,2 (Pa)

τx1x2 Material shear stress (Pa)119
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Figure 5.27. Sensitivity analysis to varying boundary conditions. (Solid line: Base
Case. Dashed line: Trial case.) Top: Compression frequency of the tube wall. Middle:
fluid velocity frequency. Bottom: compression frequency and fluid velocity frequency.

120



Texas Tech University, Nilmini Saumya Wijeratne, May 2008

Time=2

Velocity [m/s]

Time=2.6

Velocity [m/s]

Figure 5.28. Streamlines in a double leaflet system: closing and opening of the first
leaflet. The scale on the left is velocity. Abscissa: Diameter of tube in meters.
Ordinate: Length of tube in meters.
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Time=3

Velocity [m/s]

Time=3.5

Velocity [m/s]

Figure 5.29. Streamlines in a double leaflet system: closing and opening of the
second leaflet. The scale on the left is velocity. Abscissa: Diameter of tube in meters.
Ordinate: Length of tube in meters.
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Figure 5.30. Displacement of the leaflet free edge: leaflet 1 (Solid line); leaflet 2
(Dashed line).
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CHAPTER 6

SUMMARY AND CONTRIBUTIONS

In chapter 2, fluid flow separation and reattachment is common occurrence in the

flexible tubes. It is important to understand the factors that promote these conditions

and to mitigate any adverse effects associated with them. A one-dimensional model

of fluid flow in a flexible channel [35] was used to develop new fluid separation and

reattachment criteria. These criteria are based on the presence of an adverse pressure

gradient and change in the total energy gradient, respectively. The new criteria are

based on measurable quantities such as fluid pressure and fluid velocity. Fluid flow

experiments at low Reynolds number flow were carried out and the experimental data

compared to the model’s predictions. The predictions were found to be qualitatively

satisfactory; the differences were attributed to either experimental errors or parameter

uncertainties.

Further numerical analysis of the merit of a closed-form solution to the one-

dimensional model is carried out using the method of characteristics. The purpose

was primarily to reduce the computational burden but also to investigate the limiting

behavior of the model. In particular, the original solution was obtained assuming a

quartic function for the fluid velocity. Here, a quadratic velocity profile was assumed.

The analysis of the solution obtained with this assumption showed that there can be

multiple locations for flow separation and flow re-attachment to occur. Additionally,

the locations of flow separation and re-attachment points were found based on the

criteria provided in [34] and these multiple locations were observed in the experiment

discussed in chapter 2.

A model for a two-dimensional mathematical representation of a flexible tube and

double leaflet valve system was developed in chapter 4. The fluid domain assumes
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non-Newtonian fluid properties and the solid domain assumes linear isotropic elastic

properties. Here, the dynamics of the fluid domain were modeled using conservation

of mass and momentum principles and the flexible domain dynamics were modeled

considering Newton’s second law. The motion of the leaflet and the tube wall in-

troduces non-stationary boundary conditions. Thus, the mathematical description of

this system involves multi-dimensional fluid dynamics and non-linear solid mechanics

resulting in a system of nonlinear partial differential equations with moving bound-

ary conditions. To solve this system of equations, the numerical formulation of the

fluid domain was transformed from the usual Eulerian framework to the Arbitrary

Lagrangian-Eulerian ALE framework. The solid domain remained in a Lagrangian

framework.

A case study (see chapter 5) using the vein and venous valve found in the legs of

humans is presented to compare known behavior to the numerical solution predictions.

Two viscosity models are used to represent the complex stress-strain relationship of

blood that contributed to the non-Newtonian properties of the system. The model

enabled an estimation of the extent of valve opening and closing as a function of the

fluid dynamics and fluid-structure interactions. The Femlab R© environment was used

to solve the model and its capabilities permitted visualization of the formation of

vortices and their role in flow regulation and leaflet motion. The simulated results

showed the formation and breakaway of vortices (vortex shedding) at the leaflet’s free

edge. It is important to understand the nature of vortex shedding at the leaflet edge,

as excessive shedding may damage the leaflet edge. Damaged leaflet edges may trigger

the process of thrombi (blood clots) formation in a later stage. Stress analysis on the

leaflet enabled the identification of those locations that were under higher stresses.

A parameter sensitivity analysis on the elasticity of the system confirms that

an increase in the elastic modulus of the leaflet affects the closing of the leaflet.
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A sensitivity analysis on the boundary conditions involving entering fluid velocity

and external compression of the tube wall reveal that the fluid entrance velocity

has a greater impact on the dynamics of the leaflet motion than the compression

frequency of the tube wall. This kind of information can be valuable to the medical

and pharmaceutical communities. Thus, this type of fundamental model can provide

a means to investigate different fluid flow dynamics and direct experimental work for

validation and further investigations.

The contribution of this study as follows.

• The criteria proposed by [34] for flow separation and re-attachment are validated

numerically.

• Model predictions at low Reynolds number flow are qualitatively compared to

experimental data.

• An approximate analytical solution to the model developed in chapter 2 is ar-

rived at using the method of characteristics. This approach served to reduce the

computational burden associated with solving an infinite dimensional problem

and to provide valuable insights into the behavior of the collapsible channel.

• The locations of flow separation and re-attachment points are found based on

the criteria provided in [34].

• The analytical solution confirmed the existence of multiple points of collapse,

which was observed in the experimental data discussed in section 2.3.

• A two-dimensional mechanistic PDE model is derived to represent blood flow

in the vein and venous valve using the conservation of mass and momentum

principles.
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• The motion of the flexible valve leaflet and vein wall introduce non-stationary

system boundaries.

• The fluid domain is modeled using an ALE frame work to provide an accurate

numerical solution while tracking the moving boundaries.

• Two viscosity models are used to represent the complex stress-strain relationship

of the fluid.

• A two-dimensional model developed in chapter 4 is used to study the dynamics

of the human vein and valve system in the legs. The model and solution envi-

ronment permitted the spatial and temporal variation in the fluid and structural

variable properties in all locutions of the system,including the locations where

these properties cannot be estimated by experimental means with out affecting

the integrity of the system.

• It is important to understand the nature of vortex shedding at the leaflet edge,

as excessive shedding may damage the leaflet edge. Damaged leaflet edges

may trigger the process of thrombi (blood clots) formation in a later stage.

The simulated results showed the formation and breakaway of vortices (vortex

shedding) at the leaflet’s free edge at normal flow and tube conditions.

• Due to the model’s flexibility the model was used to predict the impact of several

variables and conditions on the overall dynamics of the system.
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CHAPTER 7

FUTURE WORK

In this work the fluid dynamics that involves flexible tubes with and without

internal flexible structures has been investigated. Furthermore, fluid properties such

as Newtonian, non-Newtonian and isotropic linear material properties for flexible

structure are incorporated.

1. The one-dimensional model proposed by Pedley[35] was used to predict the low

Reynolds number flow. The model predictions were compared to experimen-

tal data. However, the experimental data were confined to pressure and flow

rate measurement. As future work, the extent of the tube collapse or expan-

sion is expected to be estimated using images (CCD camera and arthroscopic

device) captured during the experiments. This will enable the establishment

of a relationship between fluid pressure, fluid velocity, and the tube flow area.

The tubing used in the experiments was translucent. To assist in future flow

visualization experiments a transparent flexible tube is recommended.

2. The approximate analytical solution obtained to the one-dimensional model

considered a quadratic velocity profile with constant coefficients in each region.

For more accurate results, time dependent coefficient are suggested as future

work.

3. The mathematical formulation of the fluid structure interactions in a flexible

tube with embedded leaflets considered linear isotropic elastic properties for the

flexible structures. However, these structures exhibit anisotropic, nonlinear elas-

tic properties. Also some non-Newtonian fluids exhibit viscoelastic properties.

The impact of these properties may produce asymmetric dynamics. Investigat-
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ing the impact of these properties is recommended.

4. The analysis was confined to a two-dimensional mathematical formulation. This

enabled the exclusion of circumferential bending and torsion that can occur in

real systems. In order to capture the substantial dynamics a three-dimensional

mathematical should be investigated.

5. The mathematical concept presented in the general modeling chapter is ex-

pected to be transferrable to other application areas to provide a mathematical

foundation to model fluid structure interactions in flexible structures with em-

bedded internal flexible structures. The advantages of using this type of fluid

structure interaction model include: (1) The incorporation of the natural ge-

ometry which allows the forces to act continuously on the structures. (2) The

assumption of a continuum, which reduces the numerical errors introduced by

the bio-mechanical model. (3) The use of the ALE framework to capture the

fluid dynamics and the moving boundaries.

6. There are several numerical techniques available to model to fluid structure

interactions with moving boundaries other than ALE method. These methods

includes fictitious boundary method, immersed boundary method, and level set

method. All these methods have certain advantages and disadvantages over each

other. This study did not consider comparing different numerical techniques.

A comparison study is recommended for future work.
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APPENDIX A

MODEL DERIVATION OF A FLEXIBLE TUBE

A.1 Conservation of Mass

The conservation of mass involves relating mass within the unit length of the

conduit to the physical quantities that vary with time and space. Hence, conservation

of mass within the conduit is a function of the fluid properties. In free surface fluid

flow, the height of the free surface as measured from a fixed point relates to the fluid

mass in the conduit (See appendix B for the derivation). Here, the transverse height,

which is in the ỹ-direction directly affects fluid flow velocity and the internal pressure

distribution. Hence, the physical quantity that affects the mass within the conduit

is the transverse height of the conduit. The conservation of mass equation for an

infinitesimal control volume of the collapsible tube in a horizontal geometry is given

by [35],

ρh̃t̃ + ρ˜̄uh̃x̃ = −ρ˜̄ux̃h̃ (A.1)

where ρ is the fluid density, h̃(x̃, t̃) is the vertical position of the tube wall, ũ(x̃, ỹ, t̃)

is the instantaneous velocity, and ˜̄u is the mean velocity given by

˜̄u =
1

h̃

h̃∫
0

ũ dy (A.2)

Define the fluctuation in the velocity by,

˜́u(x̃, ỹ, t̃) = ũ(x̃, ỹ, t̃)− ˜̄u(x̃, t̃). (A.3)
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where ú(x, y, t) is the fluctuation. These quantities all are functions of the spatial

variable, x̃, and time, t̃.

Using the definitions listed in Table 2.1, the dimensionless form of Equation (A.1)

given by,

ρht + ρūhx = −ρūxh. (A.4)

A.2 Conservation of Momentum

An application of the conservation of momentum is based on balancing the rate of

change in the momentum of the control volume of the fluid to the net forces acting on

the fluid. The acceleration component consists of transient and convective changes

in the acceleration of the fluid. Since the forces are on a moving fluid in a horizontal

direction, gravitational forces can be neglected. In general the longitudinal fluid

velocity ũ is a function of time and the longitudinal (x) and transverse (y) coordinates

[4]. The momentum balance is a one-dimensional Navier-Stokes equation given by,

∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
=

1

ρ

(
−∂p̃
∂x̃

+ µ

[
∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2

])
(A.5)

where ρ and µ represent the density and the viscosity of the fluid, respectively; and

the forces on the right hand side are the pressure and viscous forces.

Viscous effects are more significant along the transverse direction as compared to

the longitudinal direction when the tube is sufficiently long. Therefore, the second

derivative of the fluid velocity in the longitudinal direction is negligible compared to

the derivative in the transverse direction. Thus, the term ∂2ũ/∂2x can be eliminated

from the above equation.

Using the definitions provided in Table 2.1 and Equation (A.3), the dimensionless
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form of the above equation is given by,

∂u

∂t
+ u

∂u

∂x
= −∂p

∂x
+Re−1∂

2ú

∂y2
. (A.6)

Accounting for energy losses due to flow re-attachment as a result of divergence

and separation of the fluid at the downstream end is important as these losses have

a direct impact on the instantaneous velocity. Since it is difficult to account for all

sources of energy losses on the instantaneous velocities, their effects on the average

velocities are considered instead. Cancelli and Pedley [31] defined the velocity fluctu-

ation component as the difference between the instantaneous velocity and the average

velocity. In addition the sum of the velocity fluctuation components in the transverse

direction for all longitudinal positions are assumed to be zero. This definition for the

instantaneous velocity in terms of the velocity fluctuation component motivates the

use of an integral form of the momentum balance given by, (see section A.4 for the

derivation) [31],

ūt + ūūx +
1

2h

∂

∂x

[∫ h

o

ú2dy

]
= −px +

(
Re−1

h

)
[úy]

∣∣∣∣h
0

. (A.7)

A.3 Equation of State

The external and internal pressures induce moments and forces on the conduit’s

flexible wall. Being elastic, the tube wall’s compliance will cause the fluid pressure,

flow area, and hence the fluid velocity to change. A balance of the forces and the

moments acting on an element of the tube wall leads to an equation of state, which

in this case is the tube law [7]. The forces and the moments that may be induced on

the tube wall are longitudinal tension and bending and circumferential bending.

In one-dimensional fluid flow, the cross-sectional area Ã of the tube, the internal

pressure p̃, and the average velocity ˜̄u are functions of x̃ and t̃. When the tube law
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applies and considering circumferential bending only, the elastic properties can be

modeled by [7],

p̃− p̃e = KpP (α) (A.8)

where α = Ã/Ão, Ão is the un-deformed cross-sectional area, and Kp is the circumfer-

ential bending stiffness coefficient. The stiffness coefficient Kp is a material property

of the tube and depends on the thickness of the tube, the modulus of elasticity and

the Poisson ratio1. When both longitudinal tension and longitudinal bending are

present, Equation (A.8) becomes [24],

p̃− p̃e = KpP (α)− T̃

R̃
− EI ∂

4ỹ

∂x̃4
(A.9)

where R̃ is the longitudinal radius of curvature, E is modulus of elasticity, and I

is the moment of inertia. If the tube has very thin walls then the contribution of

circumferential and longitudinal bending are negligible thus, Equation (A.9) becomes

p̃− p̃e = − T̃
R̃

(A.10)

For a two-dimensional Cartesian coordinate system, the radius of curvature is

given by [24]

1

R̃
=

h̃x̃x̃[
1 +

(
h̃x̃

)2
]−3/2

. (A.11)

Substitution of the above into Equation (A.10) and applying the definitions in

Table 2.1 give the following dimensionless form of the tube law,

pe − p =
Thxx

(1 + hx
2)3/2

. (A.12)

1The ratio of transverse contraction strain to the longitudinal extension strain in the direction of
the stretching force.
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A.4 Derivation of Equation (2.5)

Using the relationships defined in Table 2.1, Equation (A.5)is converted to the

following dimensionless form,

ut + uux = px +Re−1uyy. (A.13)

Integrating this equation across the channel width yields equation (2.5). The deriva-

tion of each component of this equation is as follows.

u(x, y, t) = ¯u(x, t) + ú(x, y, t) (A.14)

ū =
1

h(x, t)

∫ h

0

udy (A.15)∫ h

0

údy = 0 (A.16)

The above equations enables the derivation of the following derivatives,

ut = ūt + út

ux = ūx + úx

uyy = úyy.

The integration of first term in Equation (A.13) is given by,

∫ h

0

utdy =

∫ h

0

ūtdy +

∫ h

0

útdy (A.17)

From Equation (A.16) it can be seen last term on the right of Equation (A.17) is

zero. Thus, ∫ h

0

utdy = ūth. (A.18)
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The integration of second term in Equation (A.13) is given by,

∫ h

0

uuxdy =

∫ h

0

ūūxdy +

∫ h

0

ūúxdy +

∫ h

0

úūxdy +

∫ h

0

úúxdy (A.19)

It can be shown that the second and third terms on the right hand side of the above

equation are equal to zero and the first and last terms can be re-written as,

∫ h

0

uuxdy

∫ y

0

úúxdy =
∂

∂x

∫ y

0

ú2dy. (A.20)

The integration of first and second terms on the right side of Equation (A.13) is given

by,

∫ y

0

pxdy = pxh(x, t) (A.21)

∫ y

0

uyydy =

∫ y

0

úyydy = úy

∣∣∣∣h
0

. (A.22)

This completes the derivation.
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APPENDIX B

DERIVATION OF CONSERVATION OF MASS EQUATION FOR FREE

SURFACE FLOW

Consider infinitesimal control volume as shown in Figure(B.1).

ρux A ρux A +ρ (ux )A dxx

A
y

x

y

Figure B.1. Free surface flow channel.

This infinitesimal slice of the fluid is normal to x direction and corresponds to

the geometry at time t. Suppose the free surface is approximately horizontal. Then

an application of the conservation of mass to this small volume in the longitudinal

direction yields,

−ρūA+ [ρūA+ ρ
∂

∂x
(ūAdx)] + ρ

∂A

∂t
dx = 0 (B.1)

where A, ū, ρ are cross-sectional area, average velocity and the fluid density. Simpli-

fying this equation yields,

ū
∂A

∂x
+ A

∂ū

∂x
+
∂A

∂t
x = 0 (B.2)

Assuming that the area A is proportional to height h, Equation (B.2) can be re-written

to arrive at the following expression,

ū
∂h

∂x
+ h

∂ū

∂x
+
∂h

∂t
x = 0. (B.3)
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APPENDIX C

ARBITRARY LAGRANGIAN-EULERIAN METHOD

C.1 Lagrangian Formulation

The following material is summarized from the work of [2]. This formulation is

used primarily in solid mechanics where each individual mesh follows the associated

material particle during its motion (see top panel of Figure C.1). The Lagrangian

description allows easy tracking of the free surfaces and interfaces of different materi-

als. However, in order to produce accurate results this formulation requires frequent

re-meshing of the system when large deformations occur.

t

x

t

x

t

x

(0,0)

(0,0)

(0,0)

(a)

(b)

(c)

Node Materail point

Mesh motion

Particle motion

Figure C.1. One-dimensional representation of (a) Lagrangian, (b) Eulerian, and (c)
ALE mesh and particle motion [2].

There are two domains used in continuum mechanics, the spatial and material
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domains.

1. Material domain - RX ⊂ Rnsd , each nsd spatial dimension consists of material

points X.

2. Spatial domain - Rx consist of spatial points x.

The computational mesh follows the motion of the continuum. Thus, the material

points of the continuum are permanently fixed to the grid nodes of the computational

mesh. This enables a definition of a reference configuration in the Lagrangian for-

mulation using the initial configuration defined by the material points (i.e. material

coordinates X) in the material domain (see Figure C.2) [2]. The motion of the mate-

R R
X x

X
x

ϕ

Reference configuration Current configuration

Figure C.2. Lagrangian description of motion [2].

rial points relates the material coordinates X to the spatial coordinates x. Consider a

one-to-one mapping of the function ϕ from the material reference frame to the spatial

reference frame. The mapping between the two reference frames is given by,

ϕ : RX × [t0, tfinal] → Rx × [t0, tfinal] (C.1)

(X, t) → ϕ(X, t) = (x, t)
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where t0 and tfinal define the initial and final computing times, respectively. The

material coordinate X relates to the spatial coordinate x in time t by the law of

motion,

x = x(X, t) ∀ t (C.2)

Therefore, for every time t, the map ϕ defines a configuration in the spatial domain.

This enables us to define a material velocity v for a fixed material point X, that is,

v(X, t) =
∂x

∂t

∣∣∣∣
X

. (C.3)

In order to ensure a one-to-one mapping of the function ϕ, the term ∂x/∂X must

have a positive value. This non-zero condition provides the required condition for the

existence of the inverse function, ϕ−1. The positivity of the above term guarantees

no orientation changes in the references axes at each point X at time t > t0. Using

the inverse function it is possible to track the history of the motion of a particular

material point X,

(X, t) = ϕ−1(x, t). (C.4)

In the Lagrangian formulation there are non-convective effects as the material point

coincides with the same grid points during the motion.

C.2 Eulerian Formulation

The following material is summarized from the work of [2]. This method is applied

mainly to fluid mechanics where the computational mesh is fixed and the continuum

moves with respect to a grid (see middle panel of Figure C.1) [2]. This formulation

consists of examining the variations in the physical quantities associated with the

fluid particles passing a fixed computational grid over the time. Thus, in this method

the computational grid is fixed and the continuum is moved (including the material
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points) with respect to the computational grid. This disassociation of material par-

ticles from the mesh grid introduces a convective effect due to the relative motion of

the deforming material points with respect to the fixed computational grid. Here, the

conservation equations are formulated in terms of the spatial coordinates x and time

t leaving the Eulerian description of motion to consider the variables and functions

that have instantaneous significance in a fixed region in space.

The material velocity v at a given computational node is the velocity of the mate-

rial point. This enables a definition of the material velocity v = v(x, t) with respect

to a fixed computational mesh thereby eliminating the necessity of a reference initial

configuration of the continuum and material coordinate. With the Eulerian descrip-

tion it is easy to follow a large deformation but a precise kinematic description of the

interfaces and flow resolutions are required.

C.3 Arbitrary Lagrangian-Eulerian Formulation

The ALE formulation makes use of the best features of both the Lagrangian and

Eulerian approaches. In the ALE method the computational mesh may be allowed to

move with the continuum similar to the Lagrangian method or the mesh can be fixed

as in the Eulerian method or the mesh can move in a specified manner to provide

continuous re-zoning (see bottom panel of Figure C.1) [2].

C.4 Relative Motion Among The Spatial, Material, And The Reference

Configuration

When ALE formulation is introduced with an arbitrarily moving computational

grid, an additional reference configuration RX is need to be defined. Here the com-

putational grid is defined in the reference domain hence reference points X are intro-

duced to identify the grid points. Note that in the ALE formulation both reference
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and material domain move and their relative motion in the spatial domain need to be

estimated. Figure (C.3) illustrates the relationship among three configurations (i.e.

R

R

x x
R X

X

χ
χ ΦΨ

ϕ

Figure C.3. Relationship among spatial, referential and material frames [2].

material, spatial, and the reference),where Φ,and Ψ, referred to mapping of referential

domain RX to spatial domain and the material domain respectively. The function ϕ

is the mapping from RX to Rx. Thus, the motion of a material point in the spatial

domain can be expressed as follows,

ϕ = Φ ◦Ψ−1 (C.5)

The motion of the material points in the spatial domain is given by,

ϕ : RX × [t0, tfinal]→ Rx × [t0, tfinal]

(X, t)→ ϕ(X, t) = (x, t) (C.6)
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Therefore, spatial coordinate x can be represented as a function of the material co-

ordinate X and time t,

x = x(X, t) t = t (C.7)

This implies that the spatial coordinate x is dependent on both X and t. Thus, the

velocity of a given material point in the spatial domain is given by,

v(X, t) =
∂x

∂t

∣∣∣∣
X

. (C.8)

The mapping Φ from RX to Rx can be understood as the motion of the grid points

in the spatial domain,

Φ : RX × [t0, tfinal]→ Rx × [t0, tfinal] (C.9)

(X , t)→ Φ(X , t) = (x, t) (C.10)

v̂(X , t) =
∂x

∂t

∣∣∣∣
X

(C.11)

where v̂ is the mesh velocity.

The mapping from RX to RX is interpreted as the material motion in the reference

domain,

Ψ−1 : RX × [t0, tfinal]→ Rx × [t0, tfinal] (C.12)

(X, t)→ Ψ−1(X , t) = (X , t) (C.13)

w(X, t) =
∂X
∂t

∣∣∣∣
X

(C.14)

where w is the particle velocity in the RX referential domain.

The relationship among velocities v, v̂, and w can be derived by differentiating
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ϕ = Φ ◦Ψ−1,

∂ϕ

∂(X, t)
(X, t) =

∂Φ

∂(X , t)
(Ψ−1(X, t))

∂Ψ−1(X, t)

∂(X, t)
(X, t) (C.15)

=
∂Φ

∂(X , t)
(X , t)∂Ψ−1(X, t)

∂(X, t)
(X, t) (C.16)

(C.17)

Considering the time derivative components of the above differential form, the velocity

relationship is,

∂x

∂t

∣∣∣∣
X

=
∂x

∂t

∣∣∣∣
X

+
∂x

∂X
.w (C.18)

v = v̂ +
∂x

∂X
.w (C.19)

Thus, the convective velocity c, i.e. the relative velocity between material and com-

putational grid nodes, is given by,

c = v − v̂ =
∂x

∂X
.w (C.20)

C.5 The Fundamental ALE Equation

It is necessary to define a relation between material (total) time derivative and the

referential time derivative within ALE framework to express the conservation laws for

mass, momentum, and energy.

C.5.1 Material, spatial and referential time derivative

Consider physical scaler quantity, f(x, t), f ∗(X , t), and f ∗∗(X, t) defined in spa-

tial, referenial and material configurations respectively. Since particle motion ϕ is

a mapping,the spatial description of the physical quantity f(x, y) is related to the
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material description of the physical quantity f ∗∗(X, t) by

f ∗∗(X, t) = f(x, t) = f((ϕX, t), t) (C.21)

f ∗∗ = f ◦ ϕ (C.22)

Thus, differentiating the material time derivative and the spatial time derivative are

related by,

∂f ∗∗

∂t

∣∣∣∣
X

=
∂f

∂t
+
∂f

∂x
.
∂x

∂t

∣∣∣∣
X

=
∂f

∂t
+
∂f

∂x
.v (C.23)

Therefore the relationship between material and the spatial time derivative can be

expressed as (by dropping ∗ notation),

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+v.∇f (C.24)

This represents the variation of the physical quantity for a given particle X,by the

sum of the local variation and the convective term which takes the account of the

relative motion of the material and the spatial system.

In order to extend the relation between material and spatial time derivatives in

to referential time derivative the following mapping is considered.

f ∗∗ = f ∗ ◦Ψ−1 (C.25)

by differentiating Equation (C.25) with respect to time (t)for a fixed material

coordinates X,

∂f ∗∗

∂t

∣∣∣∣
X

=
∂f ∗

∂t

∣∣∣∣
X

+
∂f ∗

∂X
∂X
∂t

∣∣∣∣
X

=
∂f ∗

∂t
+
∂f ∗

∂X
.w (C.26)

This equation relates material and the referential time derivatives. By using the
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Equations (C.20) and (C.26) the fundamental ALE relation between material time

derivatives, referential time derivatives and the spatial gradient can be given by,

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
X

+
∂f

∂x
.c =

∂f

∂t

∣∣∣∣
X

+c.∇f (C.27)

This can be interpreted as the time derivative of the physical quantity f for a give

particle X in spatial domain, as the sum of the local time derivative with respect to

reference coordinate system and the convective term that takes into account of the

relative velocity c between the material and the referential system.
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APPENDIX D

COMSOL MODEL - SINGLE VALVE
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1. Table of Contents 

• Title - COMSOL Model Report  
• Table of Contents  
• Model Properties  
• Constants  
• Global Expressions  
• Geometry  
• Geom1  
• Extrusion Coupling Variables  
• Solver Settings  
• Postprocessing  
• Variables 

2. Model Properties 

Property Value 
Model name  Singlevalve 
Author  Nilmini Wijeratne 
Company  Texas Tech University  
Department  Chemical Engineering 
Reference   
URL   
Saved date Dec 16, 2007 11:44:15 PM
Creation date Aug 9, 2007 11:48:22 AM
COMSOL version COMSOL 3.3.0.511 

File name: C:\Users\nilmini\Research\Femlabfiles\test9-13.mph 

Application modes and modules used in this model: 

• Geom1 (2D)  
o Non-Newtonian Flow (Chemical Engineering Module)  
o Plane Strain  
o Moving Mesh (ALE) 

3. Constants 

Name Expression Value Description
rho 1060     
g 9.81     
h1 0.18     
u_amp 0.75     
delta_max 0.004     



C 0.3     
T1 28     
nu1 0.021     
mu37 1.4*10^(-3)     

4. Global Expressions 

Name Expression Description
u_max u_amp*A    
A (abs(sin(2*pi*t/3))+sin(2*pi*t/3))/2    
k0 exp(3.874-10.41*C+13.8*C^2-6.738*C^3)    
k1 exp(1.3435-2.803*C+2.711*C^2-0.6479*C^3)    
gC exp(-6.1508+27.923*C-25.6*C^2+3.697*C^3)    
B (-abs(sin(2*pi*t/3))+sin(2*pi*t/3))/2    
N1 (abs(sin(2*pi*t/3)+sin(2*pi*t/1.5)) + 

(sin(2*pi*t/3)+sin(2*pi*t/1.5))) /2 
   

N2 (-abs(sin(2*pi*t/3)+sin(2*pi*t/1.5)) + 
(sin(2*pi*t/3)+sin(2*pi*t/1.5))) /2 

   

5. Geometry 

Number of geometries: 1 

5.1. Geom1 

 



 

5.1.1. Point mode 

 

5.1.2. Boundary mode 

 



5.1.3. Subdomain mode 

 

6. Geom1 

Space dimensions: 2D 

Independent variables: X, Y, Z 

6.1. Expressions 

6.1.1. Subdomain Expressions 

Subdomain 1-3, 5-7, 10-12, 14, 16-17 
k (k0+k1*sqrt(sr_chns/gC))/(1+sqrt(sr_chns/gC))
muP mu37*exp(nu1*(37-T1)) 

6.2. Mesh 

6.2.1. Mesh Statistics 

Number of degrees of freedom 45190
Number of mesh points 2788 
Number of elements 2797 
Triangular 260 



Quadrilateral 2537 
Number of boundary elements 619 
Number of vertex elements 30 
Minimum element quality 0.017
Element area ratio 0.026

 

6.3. Application Mode: Non-Newtonian Flow (chns) 

Application mode type: Non-Newtonian Flow (Chemical Engineering Module) 

Application mode name: chns 

6.3.1. Application Mode Properties 

Property Value 
Default element type Lagrange - P2 P1 
Analysis type Transient 
Stress tensor Total 
Corner smoothing Off 
Non-isothermal flow Off 
Turbulence model None 
Realizability Off 
Non-Newtonian flow On 



Brinkman on by default Off 
Two-phase flow Single-phase flow
Frame Frame (xy) 
Weak constraints Ideal 

6.3.2. Variables 

Dependent variables: u, v, p, logk, logd, logw, phi, nxw, nyw 

Shape functions: shlag(2,'lm1'), shlag(2,'lm2'), shlag(2,'u'), shlag(2,'v'), shlag(1,'p') 

Interior boundaries not active 

6.3.3. Boundary Settings 

Boundary   1, 3, 5 2, 13 
Type   Velocity Slip/Symmetry
X-velocity (u0) m/s u_max*(s-0.5)*(s+0.5) 0 
Y-velocity (v0) m/s 0 0 
Pressure (p0) Pa 0 0 
Boundary 8, 10, 21, 24-25, 35, 37-42, 44 29-31 
Type Velocity Normal flow, pressure
X-velocity (u0) u2t 0 
Y-velocity (v0) v2t 0 
Pressure (p0) 0 1000

6.3.4. Subdomain Settings 

Subdomain   1-3, 5-7, 10-12, 14, 16-17 
Shape functions (shape)   shlag(2,'lm1') shlag(2,'lm2') shlag(2,'u') 

shlag(2,'v') shlag(1,'p')
Integration order (gporder)   4 4 2
Constraint order (cporder)   2 2 1
Density (rho) kg/m3 1060
Volume force, X-dir. (F_x) N/m3 -rho*g
Zero shear rate viscosity 
(eta0) 

Pa⋅s muP/(1-0.5*k*C)^2 

Model parameter (n) 1 0.392
Model parameter (lambda) s 0.11
Infinite shear rate viscosity 
(eta_inf) 

Pa⋅s 0.0022 

Viscosity model type   user



(type_visc) 
Isotropic diffusion switch 
(idon) 

m2 1 

6.4. Application Mode: Plane Strain (pn) 

Application mode type: Plane Strain 

Application mode name: pn 

6.4.1. Application Mode Properties 

Property Value
Default element type Lagrange - Quadratic
Analysis type Static 
Specify eigenvalues using Eigenfrequency 
Frame Frame (xy) 
Weak constraints Ideal 

6.4.2. Variables 

Dependent variables: u2, v2 

Shape functions: shlag(2,'lm7'), shlag(2,'lm8'), shlag(2,'u2'), shlag(2,'v2') 

Interior boundaries not active 

6.4.3. Point Settings 

Point   1-30
Shape functions (wcshape) 1 [1;2]

6.4.4. Boundary Settings 

Boundary   7, 32 8, 10, 21, 24-25, 35, 37-42, 44
Edge load X-dir. (Fx) 1 0 -lm1
Edge load Y-dir. (Fy) 1 0 -lm2
Hx 1 1 0 
Constraint Y-dir. (Ry) m 0 0 
Hy 1 1 0 
Boundary 9, 26, 36, 43 
Edge load X-dir. 
(Fx) 

0 



Edge load Y-dir. 
(Fy) 

0 

Hx 0 
Constraint Y-dir. 
(Ry) 

(delta_max/h1^4)*sin(2*pi*t/3)*x*(x-h1)*(x-h1-0.09)*(x-h1-
0.135) 

Hy 1 

6.4.5. Subdomain Settings 

Subdomain   4, 9, 15 8, 13 
Shape functions 
(shape) 

  shlag(2,'lm7') shlag(2,'lm8') 
shlag(2,'u2') shlag(2,'v2')

shlag(2,'lm7') shlag(2,'lm8') 
shlag(2,'u2') shlag(2,'v2')

Integration order 
(gporder) 

  4 4 4 4 

Young's modulus 
(E) 

Pa 3.3e6 15e6 

Density (rho) kg/m3 960 500
Poisson's ratio 
(nu) 

1 0.44 0.44 

Thickness 
(thickness) 

m 0.0005 0.0000025 

6.5. Application Mode: Moving Mesh (ALE) (ale) 

Application mode type: Moving Mesh (ALE) 

Application mode name: ale 

6.5.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Smoothing method Laplace 
Analysis type Transient 
Allow remeshing Off 
Defines frame Frame (ale) 
Original reference frame Frame (ale) 
Motion relative to Frame (xy) 
Weak constraints Non-ideal 

6.5.2. Variables 

Dependent variables:  



Shape functions: shlag(2,'lm9'), shlag(2,'lm10'), shlag(2,'x'), shlag(2,'y') 

Interior boundaries not active 

6.5.3. Boundary Settings 

Boundary   1-3, 5, 13, 29-31 8, 10, 21, 24-25, 35, 37-42, 44
Type   Mesh displacement Mesh displacement 
Mesh displacement (deform) m {0;0} {u2;v2}
defflag m/s {1;1} {1;1}

6.5.4. Subdomain Settings 

Subdomain   1-3, 5-7, 10-12, 14, 16-17 4, 8-9, 13, 15 
Shape functions 
(shape) 

  shlag(2,'lm9') shlag(2,'lm10') 
shlag(2,'x') shlag(2,'y')

shlag(2,'lm9') shlag(2,'lm10') 
shlag(2,'x') shlag(2,'y') 

Integration order 
(gporder) 

  4 4 4 4 

type   free Phys
Displacement 
variables (physexpr) 

m {0;0} {u2;v2} 

Subdomain initial value   1-3, 5-7, 10-12, 14, 16-17 4, 8-9, 13, 15
Spatial coordinate (x) m xinit_ale xinit_ale 
Spatial coordinate (y) m yinit_ale yinit_ale 

7. Extrusion Coupling Variables 

7.1. Geom1 

7.1.1. Source Point: 19 

Name Value 
Expression v2+Y 
Transformation type General 
Source transformation   
Destination Subdomain 1-17 (Geom1) 
Name Yp 

7.1.2. Source Point: 19 

Name Value 
Expression sqrt(v^2+u^2)
Transformation type General 



Source transformation   
Destination Subdomain 1-17 (Geom1) 
Name Vp 

8. Solver Settings 

Solve using a script: off 

Analysis type Transient 
Auto select solver On 
Solver Time dependent
Solution form Automatic 
Symmetric auto 
Adaption Off 

8.1. Direct (UMFPACK) 

Solver type: Linear system solver 

Parameter Value
Pivot threshold 0.1 
Memory allocation factor 0.7 

8.2. Time Stepping 

Parameter Value
Times 0:0.01:10 
Relative tolerance 0.01 
Absolute tolerance 0.0010 
Times to store in output Specified times 
Time steps taken by solver Free 
Manual tuning of step size Off 
Initial time step 0.0010 
Maximum time step 1.0 
Maximum BDF order 5 
Singular mass matrix Maybe 
Consistent initialization of DAE systems Backward Euler 
Error estimation strategy Exclude algebraic
Allow complex numbers Off 

8.3. Advanced 



Parameter Value 
Constraint handling method Elimination
Null-space function Automatic 
Assembly block size 5000 
Use Hermitian transpose of constraint matrix and in symmetry detection Off 
Use complex functions with real input Off 
Stop if error due to undefined operation On 
Type of scaling Automatic 
Manual scaling   
Row equilibration On 
Manual control of reassembly Off 
Load constant On 
Constraint constant On 
Mass constant On 
Damping (mass) constant On 
Jacobian constant On 
Constraint Jacobian constant On 

9. Postprocessing 

 

 

 



10. Variables 

10.1. Point 

10.1.1. Point 1-3, 7-9, 24-28 

Name Description Expression
FXg_pn Point load in global X-dir.   
FYg_pn Point load in global Y-dir.   
disp_pn Total displacement   

10.1.2. Point 4-6, 10-23, 29-30 

Name Description Expression
FXg_pn Point load in global X-dir. 0 
FYg_pn Point load in global Y-dir. 0 
disp_pn Total displacement sqrt(real(u2)^2+real(v2)^2)

10.2. Boundary 

10.2.1. Boundary 1-6, 11-14, 17-18, 20, 22, 27-31, 33-34, 45-46 

Name Description Expression
K_X_chns Viscous force per area, X 

component 
2 * nX_chns * eta_chns * uX+nY_chns * 
eta_chns * (uY+vX) 

T_X_chns Total force per area, X 
component 

-nX_chns * p+2 * nX_chns * eta_chns * 
uX+nY_chns * eta_chns * (uY+vX) 

K_Y_chns Viscous force per area, Y 
component 

nX_chns * eta_chns * (vX+uY)+2 * nY_chns * 
eta_chns * vY 

T_Y_chns Total force per area, Y 
component 

-nY_chns * p+nX_chns * eta_chns * (vX+uY)+2 
* nY_chns * eta_chns * vY 

FXg_pn Edge load in global X-dir.   
FYg_pn Edge load in global Y-dir.   
disp_pn Total displacement   
TaX_pn Surface traction 

(force/area) in X-dir. 
  

TaY_pn Surface traction 
(force/area) in Y-dir. 

  

10.2.2. Boundary 7, 9, 15-16, 19, 23, 26, 32, 36, 43 

Name Description Expression
K_X_chns Viscous force per area, X component   



T_X_chns Total force per area, X component   
K_Y_chns Viscous force per area, Y component   
T_Y_chns Total force per area, Y component   
FXg_pn Edge load in global X-dir. 0 
FYg_pn Edge load in global Y-dir. 0 
disp_pn Total displacement sqrt(real(u2)^2+real(v2)^2) 
TaX_pn Surface traction (force/area) in X-dir. sX_pn * nX_pn+sXY_pn * nY_pn
TaY_pn Surface traction (force/area) in Y-dir. sXY_pn * nX_pn+sY_pn * nY_pn

10.2.3. Boundary 8, 10, 21, 24-25, 35, 37-42, 44 

Name Description Expression
K_X_chns Viscous force per area, 

X component 
2 * nX_chns * eta_chns * uX+nY_chns * eta_chns 
* (uY+vX) 

T_X_chns Total force per area, X 
component 

-nX_chns * p+2 * nX_chns * eta_chns * 
uX+nY_chns * eta_chns * (uY+vX) 

K_Y_chns Viscous force per area, 
Y component 

nX_chns * eta_chns * (vX+uY)+2 * nY_chns * 
eta_chns * vY 

T_Y_chns Total force per area, Y 
component 

-nY_chns * p+nX_chns * eta_chns * (vX+uY)+2 * 
nY_chns * eta_chns * vY 

FXg_pn Edge load in global X-
dir. 

FX_pn * thickness_pn 

FYg_pn Edge load in global Y-
dir. 

FY_pn * thickness_pn 

disp_pn Total displacement sqrt(real(u2)^2+real(v2)^2) 
TaX_pn Surface traction 

(force/area) in X-dir. 
sX_pn * nX_pn+sXY_pn * nY_pn 

TaY_pn Surface traction 
(force/area) in Y-dir. 

sXY_pn * nX_pn+sY_pn * nY_pn 

10.3. Subdomain 

10.3.1. Subdomain 1-3, 5-7, 10-12, 14, 16-17 

Name Description Expression
U_chns Velocity field sqrt(u^2+v^2) 
V_chns Vorticity vX-uY 
divU_chns Divergence of 

velocity field 
uX+vY 

sr_chns Shear rate sqrt(0.5 * (4 * uX^2+2 * (uY+vX)^2+4 * 
vY^2)+eps) 

cellRe_chns Cell Reynolds rho_chns * U_chns * h/eta_chns 



number 
res_u_chns Equation residual for 

u 
rho_chns * (u * uX+v * uY)+pX-F_x_chns-
eta_chns * (2 * uXX+uYY+vXY) 

res_tst_u_chns Variational equation 
residual for u 

nojac(rho_chns) * (nojac(u) * uX+nojac(v) * 
uY)+pX-nojac(eta_chns) * (2 * uXX+uYY+vXY)

res_sc_u_chns Shock capturing 
residual for u 

rho_chns * (u * uX+v * uY)+pX-F_x_chns 

res_v_chns Equation residual for 
v 

rho_chns * (u * vX+v * vY)+pY-F_y_chns-
eta_chns * (vXX+uYX+2 * vYY) 

res_tst_v_chns Variational equation 
residual for v 

nojac(rho_chns) * (nojac(u) * vX+nojac(v) * 
vY)+pY-nojac(eta_chns) * (vXX+uYX+2 * vYY)

res_sc_v_chns Shock capturing 
residual for v 

rho_chns * (u * vX+v * vY)+pY-F_y_chns 

beta_X_chns Convective field, X 
component 

rho_chns * u 

beta_Y_chns Convective field, Y 
component 

rho_chns * v 

Dm_chns Mean diffusion 
coefficient 

eta_chns 

da_chns Total time scale 
factor 

rho_chns 

FXg_pn Body load in global 
X-dir. 

  

FYg_pn Body load in global 
Y-dir. 

  

disp_pn Total displacement   
sX_pn sX normal stress 

global sys. 
  

sY_pn sY normal stress 
global sys. 

  

sZ_pn sZ normal stress 
global sys. 

  

sXY_pn sXY shear stress 
global sys. 

  

eX_pn eX normal strain 
global sys. 

  

eY_pn eY normal strain 
global sys. 

  

eXY_pn eXY shear strain 
global sys. 

  

K_pn Bulk modulus   
G_pn Shear modulus   



mises_pn von Mises stress   
Ws_pn Strain energy density   
evol_pn Volumetric strain   
tresca_pn Tresca stress   
xinit_ale x coordinate initial 

value 
X 

yinit_ale y coordinate initial 
value 

Y 

dx_ale x-displacement x-X 
dy_ale y-displacement y-Y 

10.3.2. Subdomain 4, 8-9, 13, 15 

Name Description Expression
U_chns Velocity field   
V_chns Vorticity   
divU_chns Divergence of 

velocity field 
  

sr_chns Shear rate   
cellRe_chns Cell Reynolds 

number 
  

res_u_chns Equation residual 
for u 

  

res_tst_u_chns Variational 
equation residual 
for u 

  

res_sc_u_chns Shock capturing 
residual for u 

  

res_v_chns Equation residual 
for v 

  

res_tst_v_chns Variational 
equation residual 
for v 

  

res_sc_v_chns Shock capturing 
residual for v 

  

beta_X_chns Convective field, 
X component 

  

beta_Y_chns Convective field, 
Y component 

  

Dm_chns Mean diffusion 
coefficient 

  

da_chns Total time scale   



factor 
FXg_pn Body load in 

global X-dir. 
0 

FYg_pn Body load in 
global Y-dir. 

0 

disp_pn Total 
displacement 

sqrt(real(u2)^2+real(v2)^2) 

sX_pn sX normal stress 
global sys. 

E_pn * (1-nu_pn) * eX_pn/((1+nu_pn) * (1-2 * 
nu_pn))+E_pn * nu_pn * eY_pn/((1+nu_pn) * (1-2 * 
nu_pn)) 

sY_pn sY normal stress 
global sys. 

E_pn * nu_pn * eX_pn/((1+nu_pn) * (1-2 * 
nu_pn))+E_pn * (1-nu_pn) * eY_pn/((1+nu_pn) * (1-
2 * nu_pn)) 

sZ_pn sZ normal stress 
global sys. 

E_pn * nu_pn * eX_pn/((1+nu_pn) * (1-2 * 
nu_pn))+E_pn * nu_pn * eY_pn/((1+nu_pn) * (1-2 * 
nu_pn)) 

sXY_pn sXY shear stress 
global sys. 

E_pn * eXY_pn/(1+nu_pn) 

eX_pn eX normal strain 
global sys. 

u2X 

eY_pn eY normal strain 
global sys. 

v2Y 

eXY_pn eXY shear strain 
global sys. 

0.5 * (u2Y+v2X) 

K_pn Bulk modulus E_pn/(3 * (1-2 * nu_pn)) 
G_pn Shear modulus 0.5 * E_pn/(1+nu_pn) 
mises_pn von Mises stress sqrt(sX_pn^2+sY_pn^2+sZ_pn^2-sX_pn * sY_pn-

sY_pn * sZ_pn-sX_pn * sZ_pn+3 * sXY_pn^2) 
Ws_pn Strain energy 

density 
0.5 * thickness_pn * (eX_pn * sX_pn+eY_pn * 
sY_pn+2 * eXY_pn * sXY_pn) 

evol_pn Volumetric strain eX_pn+eY_pn 
tresca_pn Tresca stress max(max(abs(s1_pn-s2_pn),abs(s2_pn-

s3_pn)),abs(s1_pn-s3_pn)) 
xinit_ale x coordinate 

initial value 
X 

yinit_ale y coordinate 
initial value 

Y 

dx_ale x-displacement x-X 
dy_ale y-displacement y-Y 
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1. Table of Contents 

• Title - COMSOL Model Report  
• Table of Contents  
• Model Properties  
• Constants  
• Global Expressions  
• Geometry  
• Geom1  
• Solver Settings  
• Postprocessing  
• Variables 

2. Model Properties 

Property Value 
Model name  Doublevalve 
Author  Nilmini Wijeratne 
Company  Texas Tech University 
Department  Chemical Engineering 
Reference   
URL   
Saved date Jan 8, 2008 4:20:28 PM 
Creation date Dec 12, 2007 7:22:05 PM
COMSOL version COMSOL 3.3.0.511 

File name: C:\Users\nilmini\Research\Femlabfiles\double12-13s2.mph 

Application modes and modules used in this model: 

• Geom1 (2D)  
o Plane Strain (Structural Mechanics Module)  
o Non-Newtonian Flow (Chemical Engineering Module)  
o Moving Mesh (ALE) 

3. Constants 

Name Expression Value Description
rho 1060     
h1 0.25     
g 9.81     
u_amp 0.75     
delta_max 0.0045     



C 0.3     
T1 28     
nu1 0.021     
mu37 1.4*10^(-3)     
delta_max1 0.0027     
k02 6.117     
k12 2.0732     
gC2 1.0222     

4. Global Expressions 

Name Expression Description
u_max u_amp*N1    
A (abs(sin(2*pi*t/3))+sin(2*pi*t/3))/2    
k0 exp(3.874-10.41*C+13.8*C^2-6.738*C^3)    
k1 exp(1.3435-2.803*C+2.711*C^2-0.6479*C^3)    
gC exp(-6.1508+27.923*C-25.6*C^2+3.697*C^3)    
B (-abs(sin(2*pi*t/3))+sin(2*pi*t/3))/2    
N1 (abs(sin(2*pi*t/3)+sin(2*pi*t/1.5)) + 

(sin(2*pi*t/3)+sin(2*pi*t/1.5))) /2 
   

N2 (-abs(sin(2*pi*t/3)+sin(2*pi*t/1.5)) + 
(sin(2*pi*t/3)+sin(2*pi*t/1.5))) /2 

   

B1 (-abs(sin(2*pi*t/3+pi/2))+sin(2*pi*t/3+pi/2))/2    

 

 

 

 

 

 

 

 

 

 



5. Geometry 

Number of geometries: 1 

5.1. Geom1 

 

5.1.1. Point mode 

 



 

 

5.1.2. Boundary mode 

 

5.1.3. Subdomain mode 



 

6. Geom1 

Space dimensions: 2D 

Independent variables: X, Y, Z 

6.1. Expressions 

6.1.1. Subdomain Expressions 

Subdomain 1-2, 4-5, 8-10, 12-13, 16-18, 20-21 
k (k0+k1*sqrt(sr_chns/gC))/(1+sqrt(sr_chns/gC))
muP mu37*exp(nu1*(37-T1)) 

6.2. Mesh 

6.2.1. Mesh Statistics 

Number of degrees of freedom 61088
Number of mesh points 3758 
Number of elements 4171 
Triangular 1108 
Quadrilateral 3063 
Number of boundary elements 716 



Number of vertex elements 37 
Minimum element quality 0.025
Element area ratio 0.008

 

6.3. Application Mode: Plane Strain (smpn) 

Application mode type: Plane Strain (Structural Mechanics Module) 

Application mode name: smpn 

6.3.1. Scalar Variables 

Name Variable Value Description 
t_old_ini t_old_ini_smpn -1 Initial condition previous time step (contact with 

dynamic friction) 

6.3.2. Application Mode Properties 

Property Value
Default element type Lagrange - Quadratic 



Analysis type Static 
Large deformation Off 
Implementation Principle of virtual work
Specify eigenvalues using Eigenfrequency 
Create frame Off 
Deform frame Frame (ref) 
Frame Frame (ref) 
Weak constraints Ideal 

6.3.3. Variables 

Dependent variables: u2, v2, p2 

Shape functions: shlag(2,'lm7'), shlag(2,'lm8'), shlag(2,'u2'), shlag(2,'v2') 

Interior boundaries not active 

6.3.4. Point Settings 

Point   1-37
Shape functions (wcshape) 1 [1;2]

6.3.5. Boundary Settings 

Boundary   5, 38 6, 8, 16, 19, 28, 31, 40, 42-45, 47, 49, 51-54, 56 
Edge load X-dir. (Fx) 1 0 -lm1
Edge load Y-dir. (Fy) 1 0 -lm2
constrcond 1 fixed Free 
Hx 1 0 0 
Constraint Y-dir. (Ry) m 0 0 
Hy 1 0 0 
Boundary 7, 41, 46 20, 32, 50, 55 
Edge load 
X-dir. (Fx) 

0 0 

Edge load 
Y-dir. (Fy) 

0 0 

constrcond displacement displacement
Hx 1 1
Constraint 
Y-dir. (Ry) 

(delta_max/h1^5)*(B1)*(x*(x-
h1)*(x-h1-0.0635)*(x-0.125-h1)*(x-
h1-0.1875)) 

(delta_max1/h1^5)*(N2)*(x*(x-
h1)*(x-h1-0.0635)*(x-0.125-h1)*(x-
h1-0.1875))

Hy 1 1



6.3.6. Subdomain Settings 

Subdomain   3, 11, 15, 19 6 
Shape functions 
(shape) 

  shlag(2,'lm7') 
shlag(2,'lm8') shlag(2,'u2') 
shlag(2,'v2')

shlag(2,'lm7') 
shlag(2,'lm8') shlag(2,'u2') 
shlag(2,'v2') 

Integration order 
(gporder) 

  4 4 4 4 4 4 

Young's modulus (E) Pa 3.3e6 15e6
Density (rho) kg/m3 500 960
Poisson's ratio (nu) 1 0.44 0.44
Thickness (thickness) m 0.0005 0.0000025 
User-defined PML 
coordinates 
(userPML) 

m {x;y} {x;y} 

Subdomain 7 14 
Shape functions (shape) shlag(2,'lm7') shlag(2,'lm8') 

shlag(2,'u2') shlag(2,'v2')
shlag(2,'lm7') shlag(2,'lm8') 
shlag(2,'u2') shlag(2,'v2')

Integration order 
(gporder) 

4 4 4 4 4 4 

Young's modulus (E) 2.3e6 20e6
Density (rho) 500 960
Poisson's ratio (nu) 0.44 0.44
Thickness (thickness) 0.0005 0.0000025
User-defined PML 
coordinates (userPML) 

{x;y} {x;y} 

6.4. Application Mode: Non-Newtonian Flow (chns) 

Application mode type: Non-Newtonian Flow (Chemical Engineering Module) 

Application mode name: chns 

6.4.1. Application Mode Properties 

Property Value 
Default element type Lagrange - P2 P1 
Analysis type Transient 
Stress tensor Total 
Corner smoothing Off 
Non-isothermal flow Off 
Turbulence model None 



Realizability Off 
Non-Newtonian flow On 
Brinkman on by default Off 
Two-phase flow Single-phase flow
Frame Frame (ref) 
Weak constraints Ideal 

6.4.2. Variables 

Dependent variables: u, v, p, logk, logd, logw, phi, nxw, nyw 

Shape functions: shlag(2,'lm1'), shlag(2,'lm2'), shlag(2,'u'), shlag(2,'v'), shlag(1,'p') 

Interior boundaries not active 

6.4.3. Boundary Settings 

Boundary   1, 3 2, 10, 22, 34 
Type   Velocity Slip/Symmetry
X-velocity (u0) m/s u_max*(s-0.5)*(s+0.5) 0 
Y-velocity (v0) m/s 0 0 
Pressure (p0) Pa 0 0 
Boundary 6, 8, 16, 19, 28, 31, 40, 42-45, 47, 49, 51-54, 56 36-37 
Type Velocity Pressure 
X-velocity (u0) u2t 0 
Y-velocity (v0) v2t 0 
Pressure (p0) 0 1000

6.4.4. Subdomain Settings 

Subdomain   1-2, 4-5, 8-10, 12-13, 16-18, 20-21 
Shape functions (shape)   shlag(2,'lm1') shlag(2,'lm2') shlag(2,'u') 

shlag(2,'v') shlag(1,'p')
Integration order (gporder)   4 4 2
Constraint order (cporder)   2 2 1
Density (rho) kg/m3 1060
Volume force, X-dir. (F_x) N/m3 -rho*g
Zero shear rate viscosity 
(eta0) 

Pa⋅s muP/(1-0.5*k*C)^2 

Viscosity model type 
(type_visc) 

Pa⋅s user 

Isotropic diffusion switch m2 1



(idon) 

6.5. Application Mode: Moving Mesh (ALE) (ale) 

Application mode type: Moving Mesh (ALE) 

Application mode name: ale 

6.5.1. Application Mode Properties 

Property Value 
Default element type Lagrange - Quadratic
Smoothing method Laplace 
Analysis type Transient 
Allow remeshing Off 
Defines frame Frame (ale) 
Original reference frame Frame (ale) 
Motion relative to Frame (ref) 
Weak constraints Non-ideal 

6.5.2. Variables 

Dependent variables:  

Shape functions: shlag(2,'lm9'), shlag(2,'lm10'), shlag(2,'x'), shlag(2,'y') 

Interior boundaries not active 

6.5.3. Boundary Settings 

Boundary   1-3, 10, 22, 34, 36-
37 

6, 8, 16, 19, 28, 31, 40, 42-45, 47, 49, 
51-54, 56 

Type   Mesh displacement Mesh displacement 
Mesh displacement 
(deform) 

m {0;0} {u2;v2} 

defflag m/s {1;1} {1;1}

6.5.4. Subdomain Settings 

Subdomain   1-2, 4-5, 8-10, 12-13, 16-18, 
20-21 

3, 6-7, 11, 14-15, 19 

Shape functions 
(shape) 

  shlag(2,'lm9') shlag(2,'lm10') 
shlag(2,'x') shlag(2,'y')

shlag(2,'lm9') shlag(2,'lm10') 
shlag(2,'x') shlag(2,'y') 



Integration order 
(gporder) 

  4 4 4 4 

type   free Phys
Displacement 
variables (physexpr) 

m {0;0} {u2;v2} 

Subdomain initial value   1-2, 4-5, 8-10, 12-13, 16-18, 20-21 3, 6-7, 11, 14-15, 19
Spatial coordinate (x) m xinit_ale xinit_ale 
Spatial coordinate (y) m yinit_ale yinit_ale 

7. Solver Settings 

Solve using a script: off 

Analysis type Transient 
Auto select solver On 
Solver Time dependent
Solution form Automatic 
Symmetric auto 
Adaption Off 

7.1. Direct (UMFPACK) 

Solver type: Linear system solver 

Parameter Value
Pivot threshold 0.1 
Memory allocation factor 0.7 

7.2. Time Stepping 

Parameter Value
Times 0:0.1:10 
Relative tolerance 0.01 
Absolute tolerance 0.0010 
Times to store in output Specified times 
Time steps taken by solver Free 
Manual tuning of step size Off 
Initial time step 0.0010 
Maximum time step 1.0 
Maximum BDF order 5 
Singular mass matrix Maybe 
Consistent initialization of DAE systems Backward Euler 



Error estimation strategy Exclude algebraic
Allow complex numbers Off 

7.3. Advanced 

Parameter Value 
Constraint handling method Elimination
Null-space function Automatic 
Assembly block size 5000 
Use Hermitian transpose of constraint matrix and in symmetry detection Off 
Use complex functions with real input Off 
Stop if error due to undefined operation On 
Type of scaling Automatic 
Manual scaling   
Row equilibration On 
Manual control of reassembly Off 
Load constant On 
Constraint constant On 
Mass constant On 
Damping (mass) constant On 
Jacobian constant On 
Constraint Jacobian constant On 

8. Postprocessing 

 

9. Variables 



9.1. Point 

9.1.1. Point 1-2, 6-7, 19-20, 32-35 

Name Description Expression
FXg_smpn Point load in global X-dir.   
FYg_smpn Point load in global Y-dir.   
disp_smpn Total displacement   

9.1.2. Point 3-5, 8-18, 21-31, 36-37 

Name Description Expression
FXg_smpn Point load in global X-dir. 0 
FYg_smpn Point load in global Y-dir. 0 
disp_smpn Total displacement sqrt(real(u2)^2+real(v2)^2)

9.2. Boundary 

9.2.1. Boundary 1-4, 9-11, 14-15, 17, 21-23, 26-27, 29, 33-37, 39, 48, 57 

Name Description Expression
FXg_smpn Edge load in global X-dir.   
FYg_smpn Edge load in global Y-dir.   
disp_smpn Total displacement   
TaX_smpn Surface traction 

(force/area) in X-dir. 
  

TaY_smpn Surface traction 
(force/area) in Y-dir. 

  

K_X_chns Viscous force per area, X 
component 

2 * nX_chns * eta_chns * uX+nY_chns * 
eta_chns * (uY+vX) 

T_X_chns Total force per area, X 
component 

-nX_chns * p+2 * nX_chns * eta_chns * 
uX+nY_chns * eta_chns * (uY+vX) 

K_Y_chns Viscous force per area, Y 
component 

nX_chns * eta_chns * (vX+uY)+2 * nY_chns * 
eta_chns * vY 

T_Y_chns Total force per area, Y 
component 

-nY_chns * p+nX_chns * eta_chns * (vX+uY)+2 
* nY_chns * eta_chns * vY 

9.2.2. Boundary 5, 7, 12-13, 18, 20, 24-25, 30, 32, 38, 41, 46, 50, 55 

Name Description Expression
FXg_smpn Edge load in global X-dir. 0 
FYg_smpn Edge load in global Y-dir. 0 
disp_smpn Total displacement sqrt(real(u2)^2+real(v2)^2) 



TaX_smpn Surface traction (force/area) in 
X-dir. 

sX_smpn * nX_smpn+sXY_smpn * 
nY_smpn 

TaY_smpn Surface traction (force/area) in 
Y-dir. 

sXY_smpn * nX_smpn+sY_smpn * 
nY_smpn 

K_X_chns Viscous force per area, X 
component 

  

T_X_chns Total force per area, X 
component 

  

K_Y_chns Viscous force per area, Y 
component 

  

T_Y_chns Total force per area, Y 
component 

  

9.2.3. Boundary 6, 8, 16, 19, 28, 31, 40, 42-45, 47, 49, 51-54, 56 

Name Description Expression
FXg_smpn Edge load in global X-

dir. 
FX_smpn * thickness_smpn 

FYg_smpn Edge load in global Y-
dir. 

FY_smpn * thickness_smpn 

disp_smpn Total displacement sqrt(real(u2)^2+real(v2)^2) 
TaX_smpn Surface traction 

(force/area) in X-dir. 
sX_smpn * nX_smpn+sXY_smpn * nY_smpn 

TaY_smpn Surface traction 
(force/area) in Y-dir. 

sXY_smpn * nX_smpn+sY_smpn * nY_smpn 

K_X_chns Viscous force per area, 
X component 

2 * nX_chns * eta_chns * uX+nY_chns * eta_chns 
* (uY+vX) 

T_X_chns Total force per area, X 
component 

-nX_chns * p+2 * nX_chns * eta_chns * 
uX+nY_chns * eta_chns * (uY+vX) 

K_Y_chns Viscous force per area, 
Y component 

nX_chns * eta_chns * (vX+uY)+2 * nY_chns * 
eta_chns * vY 

T_Y_chns Total force per area, Y 
component 

-nY_chns * p+nX_chns * eta_chns * (vX+uY)+2 * 
nY_chns * eta_chns * vY 

9.3. Subdomain 

9.3.1. Subdomain 1-2, 4-5, 8-10, 12-13, 16-18, 20-21 

Name Description Expression
FXg_smpn Body load in global 

X-dir. 
  

FYg_smpn Body load in global 
Y-dir. 

  



disp_smpn Total displacement   
sX_smpn sX normal stress 

global sys. 
  

sY_smpn sY normal stress 
global sys. 

  

sZ_smpn sZ normal stress 
global sys. 

  

sXY_smpn sXY shear stress 
global sys. 

  

eX_smpn eX normal strain 
global sys. 

  

eY_smpn eY normal strain 
global sys. 

  

eXY_smpn eXY shear strain 
global sys. 

  

K_smpn Bulk modulus   
G_smpn Shear modulus   
mises_smpn von Mises stress   
Ws_smpn Strain energy density   
evol_smpn Volumetric strain   
tresca_smpn Tresca stress   
U_chns Velocity field sqrt(u^2+v^2) 
V_chns Vorticity vX-uY 
divU_chns Divergence of 

velocity field 
uX+vY 

sr_chns Shear rate sqrt(0.5 * (4 * uX^2+2 * (uY+vX)^2+4 * 
vY^2)+eps) 

cellRe_chns Cell Reynolds 
number 

rho_chns * U_chns * h/eta_chns 

res_u_chns Equation residual for 
u 

rho_chns * (u * uX+v * uY)+pX-F_x_chns-
eta_chns * (2 * uXX+uYY+vXY) 

res_tst_u_chns Variational equation 
residual for u 

nojac(rho_chns) * (nojac(u) * uX+nojac(v) * 
uY)+pX-nojac(eta_chns) * (2 * uXX+uYY+vXY)

res_sc_u_chns Shock capturing 
residual for u 

rho_chns * (u * uX+v * uY)+pX-F_x_chns 

res_v_chns Equation residual for 
v 

rho_chns * (u * vX+v * vY)+pY-F_y_chns-
eta_chns * (vXX+uYX+2 * vYY) 

res_tst_v_chns Variational equation 
residual for v 

nojac(rho_chns) * (nojac(u) * vX+nojac(v) * 
vY)+pY-nojac(eta_chns) * (vXX+uYX+2 * vYY)

res_sc_v_chns Shock capturing 
residual for v 

rho_chns * (u * vX+v * vY)+pY-F_y_chns 

beta_X_chns Convective field, X rho_chns * u 



component 
beta_Y_chns Convective field, Y 

component 
rho_chns * v 

Dm_chns Mean diffusion 
coefficient 

eta_chns 

da_chns Total time scale 
factor 

rho_chns 

xinit_ale x coordinate initial 
value 

X 

yinit_ale y coordinate initial 
value 

Y 

dx_ale x-displacement x-X 
dy_ale y-displacement y-Y 

9.3.2. Subdomain 3, 6-7, 11, 14-15, 19 

Name Description Expression
FXg_smpn Body load in 

global X-dir. 
0 

FYg_smpn Body load in 
global Y-dir. 

0 

disp_smpn Total 
displacement 

sqrt(real(u2)^2+real(v2)^2) 

sX_smpn sX normal 
stress global 
sys. 

E_smpn * (1-nu_smpn) * eX_smpn/((1+nu_smpn) * (1-
2 * nu_smpn))+E_smpn * nu_smpn * 
eY_smpn/((1+nu_smpn) * (1-2 * nu_smpn)) 

sY_smpn sY normal 
stress global 
sys. 

E_smpn * nu_smpn * eX_smpn/((1+nu_smpn) * (1-2 * 
nu_smpn))+E_smpn * (1-nu_smpn) * 
eY_smpn/((1+nu_smpn) * (1-2 * nu_smpn)) 

sZ_smpn sZ normal 
stress global 
sys. 

E_smpn * nu_smpn * eX_smpn/((1+nu_smpn) * (1-2 * 
nu_smpn))+E_smpn * nu_smpn * 
eY_smpn/((1+nu_smpn) * (1-2 * nu_smpn)) 

sXY_smpn sXY shear 
stress global 
sys. 

E_smpn * eXY_smpn/(1+nu_smpn) 

eX_smpn eX normal 
strain global 
sys. 

u2X 

eY_smpn eY normal 
strain global 
sys. 

v2Y 

eXY_smpn eXY shear 
strain global 

0.5 * (u2Y+v2X) 



sys. 
K_smpn Bulk modulus E_smpn/(3 * (1-2 * nu_smpn)) 
G_smpn Shear modulus 0.5 * E_smpn/(1+nu_smpn) 
mises_smpn von Mises 

stress 
sqrt(sX_smpn^2+sY_smpn^2+sZ_smpn^2-sX_smpn * 
sY_smpn-sY_smpn * sZ_smpn-sX_smpn * sZ_smpn+3 
* sXY_smpn^2) 

Ws_smpn Strain energy 
density 

0.5 * thickness_smpn * (eX_smpn * 
sX_smpn+eY_smpn * sY_smpn+2 * eXY_smpn * 
sXY_smpn) 

evol_smpn Volumetric 
strain 

eX_smpn+eY_smpn 

tresca_smpn Tresca stress max(max(abs(s1_smpn-s2_smpn),abs(s2_smpn-
s3_smpn)),abs(s1_smpn-s3_smpn)) 

U_chns Velocity field   
V_chns Vorticity   
divU_chns Divergence of 

velocity field 
  

sr_chns Shear rate   
cellRe_chns Cell Reynolds 

number 
  

res_u_chns Equation 
residual for u 

  

res_tst_u_chns Variational 
equation 
residual for u 

  

res_sc_u_chns Shock 
capturing 
residual for u 

  

res_v_chns Equation 
residual for v 

  

res_tst_v_chns Variational 
equation 
residual for v 

  

res_sc_v_chns Shock 
capturing 
residual for v 

  

beta_X_chns Convective 
field, X 
component 

  

beta_Y_chns Convective 
field, Y 
component 

  

Dm_chns Mean diffusion   



coefficient 
da_chns Total time scale 

factor 
  

xinit_ale x coordinate 
initial value 

X 

yinit_ale y coordinate 
initial value 

Y 

dx_ale x-displacement x-X 
dy_ale y-displacement y-Y 
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APPENDIX F

ESTIMATING THE DIMENSIONS OF THE VEIN AND VALVE

%

clear all clc close all

x=imread(’vein1’,’JPG’); I=x(:,:,1); figure(1), imshow(I)

title(’Original image’)

% Histogram

h=imhist(I); figure(2),plot(h) ylim(’auto’)

% filtering

I1=fspecial(’unsharp’,0.7);

I2=imfilter(I,I1,’conv’,’replicate’,’same’); figure(3),imshow(I2)

I3=im2bw(I,[70/255]); figure(4),imshow(I3)

RBH=bwareaopen(I3,12000,4); figure(5), imshow(RBH)

BH=imfill(RBH,’holes’);

figure(6), imshow(BH)
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se = strel(’disk’,1);

cBH = imclose(BH,se);

figure(7), imshow(cBH)

I4=double(RBH);

I5=edge(I4,’canny’);

figure(8), imshow(I5)
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