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Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport
and vibrations in mesoscopic systems
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The transmission coefficient for vibrational waves crossing an abrupt junction between two thin elastic
plates of different widths is calculated. These calculations are relevant to ballistic phonon thermal transport at
low temperatures in mesoscopic systems and theQ for vibrations in mesoscopic oscillators. Complete results
are derived in a simple scalar model of the elastic waves, and results for long-wavelength modes are obtained
using full elasticity theory. We suggest that thin-plate elasticity theory provides a useful and tractable approxi-
mation to the three-dimensional geometry.
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I. INTRODUCTION

The electronic properties of mesoscopic systems h
been studied experimentally and theoretically for ma
years. More recently the behavior of other excitations,
example, lattice vibrations~phonons! and spin degrees o
freedom, have come under study in these systems. In
paper we present results relevant to the issues of heat t
port by phonons and the dissipation of vibrational modes
mesoscopic systems.

The interest in heat transport by phonons in mesosco
systems arises because for easily fabricated devices
wavelength of a typical thermal phonon becomes compar
to the dimension of the thermal pathway at accessible t
peratures of order 1 K. Thusquantizedthermal transport due
to the discrete mode structure of the thermal pathway sho
become evident. We1 and others2,3 showed that this leads to
natural quantum unit of thermal conductancekB

2T/h similar
to the role ofe2/h as a quantum of electrical conductance
one-dimensional wires.4 This quantum unit of thermal con
ductance is predicted2 to be clearly observable at low enoug
temperatures where only the acoustic (v→0) vibrational
modes are excited in the thermal pathway—the wavegu
like modes with nonzero frequency cutoffs at long wav
lengths are populated with exponentially small numbers
universal thermal conductance is predicted equal
NAp2kB

2T/3h with NA the number of acoustic modes~four
for a freely suspended beam of material, corresponding
longitudinal mode, two bending modes, and a torsio
mode!. These predictions were recently verified in beauti
experiments by Schwabet al.5

Vibrational modes in mesoscopic systems are found
have anomalously low-Q values, compared to larger system
of the same material.6–11At first sight, the dissipation migh
be expected to become smaller as the oscillator beco
smaller, since defects such as dislocations are elimin
when the size gets less than a typical defect separation. T
the observation of lower values ofQ was a surprise. In ad
dition, unexpected dependencies on temperature11 and mag-
0163-1829/2001/64~8!/085324~22!/$20.00 64 0853
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netic field7 have been observed and remain unexplained.
Both the possibility of observing the universal therm

conductance and explanations for theQ of small resonators
involve the properties of phonon excitations with a wav
length comparable to the system size. Here we investiga
particular issue relevant to both these questions, namely
coupling of vibrational modes across an abrupt junction
tween two blocks of the same material but with differe
dimensions.

The geometry typical of a number of experiments
shown in Fig. 1. The ‘‘bridge’’ is made of silicon, silicon
nitride, or gallium arsenide, is freely floating, and is of rec
angular cross section. The bridge is connected to two la
blocks of the same semiconductor. In thermal-conduction
periments the block at one end, called the cavity, is a
freely floating~and is physically supported by four bridge!
and is of the same thickness. The block at the other
provides both the mechanical support and a thermal re
voir. In recent experiments12 the dimensions were thicknes
t5200 nm, widthb5300 nm, and lengthL55 mm. In vi-
bration experiments the bridge may be supported just at
end ~a cantilever!13 or at both ends~a beam!.9,11

An important question in both thermal transport and o
cillator damping experiments is the coupling of the vibr
tional modes of the bridge to modes in the supports—h
well the energy in a mode in the bridge is transmitted to
supports, and vice versa. We have previously introduce

FIG. 1. Schematic of possible experimental geometry for
study of thermal transport and oscillations in mesoscopic syste
©2001 The American Physical Society24-1

Matthias Imboden
Sticky Note
calculates the transmission coefficient for elastic energy into the base and assumes it is lostQ-1~ vg T/(omega L)vg is teh group velocity domega/dkfor flexural modes omega~k^2.t,w<<lambda 
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simple scalar model of the elastic waves to study this qu
tion in the context of thermal transport.1 In this paper we
give a more realistic description of the vibrational modes

First, in Sec. II, we introduce an improved scalar mod
using a better choice for the boundary conditions on the s
lar field that provides a more realistic approximation to t
waves in an elastic medium. The scalar model in its revi
form provides a useful first guide to the expected behavio
the experimental system, and a simpler environment
which to develop intuition and methods of theoretical atta
With the scalar model we perform a complete calculation
the scattering of the waves at the abrupt junction between
bridge and the supports for all the modes and at all w
vectors. We use the resulting transmission coefficients
evaluate the effect of the abrupt junction on the thermal c
ductance, particularly the universal low-temperature exp
sion. In addition we introduce a simple method to calcul
the transmission coefficients for the long-wavelength aco
tic modes, and compare the results with the general res
In the full elastic calculation we will not be able to calcula
the transmission coefficient for the full range of modes,
will be restricted to this type of long-wavelength calculatio

Second we propose that the elasticity theory for a th
plate geometry provides a useful semiquantitative desc
tion of the experimental geometry. This is described in S
III. The full elasticity theory for the modes in the two
dimensional, thin-plate geometry is sufficiently tractable t
a complete mode spectrum is readily calculated. On the o
hand, a fully three-dimensional elasticity theory can only
attacked purely numerically. The two-dimensional theory
produces many important features of a fully thre
dimensional elasticity theory, for example the mixing of bu
longitudinal and transverse waves by reflection at bou
aries, the correct behavior of the dispersion relation at lo
wavelength and low frequency, including the ‘‘bending
modes with the unusual quadratic dispersionv}k2 at long
wavelengths, and regions of negative dispersion in the m
spectra. Thus the results should be more informative than
naive scalar model. The results should be accurate at s
ciently low temperatures where the modes with struct
across the thickness are frozen out. We use the thin-p
model to investigate the mode structure in the beam, and
coupling of these modes to the supports, also treated as
plates of the same thickness. Finally, in Sec. IV we apply
results to the issues of heat transport and oscillations in
soscopic systems.

A. Heat transport

A thermal transport experiment is shown in Fig. 2. Tw
thermal masses are connected by four thermal pathway
mesoscopic dimensions in which heat transport by phon
is the dominant mechanism. One of the thermal mas
which we call the cavity, is a freely suspended thin block
semiconductor, with resistive wires on the upper surface
act as heat source and thermometer. The four bridges a
the thermal pathway to the outside world, as well as m
chanical supports. Conceptually, heat is added to the ca
by resistive heating, and the resulting temperature differe
08532
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from the reservoir is measured, yielding, for small heatin
the thermal conductance of the bridges. In practice iss
such as the thermal contact between the electrons in the
sistive heater and thermometer and the phonons, and o
thermal pathways to the reservoir such as through the e
trical contacts to the resistive heaters, have to be conside
In this paper we will focus on the ideal situation where t
phonon thermal pathway of the bridge dominates the c
ductance.

In mesoscopic systems it is easy to cool to temperatu
where the transverse dimensions of the beam are compa
to or smaller than the typical phonon wavelengthhc/kBT
wherekB is Boltzmann’s constant,h is Planck’s constant,c is
a typical speed of sound in the material, andT is the tem-
perature. When this condition is satisfied the discrete m
structure of the thermal pathway becomes evident. An
lescuet al.1 showed that the thermal conductance takes o
quasiuniversal form, largely independent of the material a
mode structure of the beam, on the assumption that the
tact between the modes in the bridge and the cavity
reservoir can be considered ideal. An ideal contact imp
that the right-going phonon modes in the bridge in Fig. 1
populated with a thermal distribution at the temperature
the cavity, and the left-going modes at the temperature of
reservoir.

In a thermal-conductance measurement the cavity and
ervoir are maintained at temperaturesT1dT andT with tem-
perature differencedT small compared to their mean tem
perature. If we first look at the transport by the right-movi
phonons, the energy flux is

H (1)5
1

2p (
m

E
0

`

dk vgm~k!\vm~k!n„vm~k!…, ~1!

wherek is the wave vector along the bridge,vm(k) is the
dispersion relation of themth discrete mode of the bridge
and vgm5dvm(k)/dk is the group velocity. Transforming
the integral to an integral over frequencies yields an exp
sion for the heat transport by right-moving phonons

FIG. 2. Experimental geometry of Tigheet al. ~Ref. 12!.
4-2
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H (1)5
1

2p (
m

E
vm

`

dv\vm~k!n„vm~k!…, ~2!

wherevm is thecutoff frequencyof the mth mode, i.e., the
lowest frequency at which this mode propagates.~We have
assumed themth mode propagates to arbitrarily large fr
quencies. If a particular mode only propagates over a fi
band of frequencies, the upper limit of the integral will b
replaced byvm

max.) The key simplification in this result is tha
the group-velocity factor is cancelled by the density of sta
in transforming from an integration over wave numbers to
integration over frequencies.

For ideal coupling to the reservoirs the distribution fun
tion n(vm(k)) for the right-moving phonons in Eq.~2! is
evaluated as the Bose distribution at thecavity temperature
T1dT. The thermal conductance is given by subtracting
analogous expressionH (2) for the left-moving phonons
given by Eq.~2!, but now with the distributionn(vm(k))
given by the Bose distribution at thereservoirtemperatureT

K5 lim
dT→0

H (1)~T1dT!2H (2)~T!

dT
. ~3!

Finally, introducing the scaled frequency variablex
5\v/kBT gives the expression1

K5
kB

2T

h (
m

I ~\vm /kBT!, ~4!

whereI is given by the integral

I ~x!5E
x

` y2ey

~ey21!2
dy. ~5!

Equation~4! demonstrates the important result that the pr
erties of the bridge only enter through the ratio of the mo
cutoff frequencies to the temperature\vm /kBT. The quan-
tity kB

2T/h plays the role of the quantum unit of therm
conductance, analogous to the quantum of electrical con
tancee2/h for one-dimensional wires. At very low tempera
tures the contribution to the thermal conductance by
modes with nonzero cutoff frequency will be exponentia
small leaving auniversalthermal conductance2

K5Na

p2kB
2T

3h
, ~6!

where Na is the number of ‘‘acoustic’’ modes, i.e., mode
with frequency tending to zero at long wavelengths. Usua
this will be four for the beam~two transverse bending
modes, one longitudinal compressional mode, and a torsi
mode!. Note that there isno dependence on the bridge pro
erties in this expression.

More generally we cannot assume perfect coupling
tween the modes in the bridge and the cavity and reserv
This can be taken into account, following the Landauer
proach to electrical conductance,4 through a transmission co
efficient for energy to be transported across the interfa
For example for imperfect contact at the cavity-bridge int
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face we would find a thermal conductance~returning to un-
scaled quantities in the integral for clarity!

K5
\2

kBT2 (
m

1

2pEvm

`

Tm~v!
v2eb\v

~eb\v21!2
dv, ~7!

whereTm(v) is the energy transmission coefficient from th
modem of the bridge at frequencyv into the cavity modes.
Imperfect coupling at the bridge-reservoir junction, and el
tic scattering due to imperfections in the bridge, can be si
larly included through a total transmission matrix as in t
electron case.

A central issue in predicting the thermal conductance
then to calculate the transmission coefficientTm(v). This is
particularly important in the question of the observability
the universal conductance at low temperatures, since
scattering of the long-wavelength phonons contributing
this quantity becomes strong—indeed for the abrupt junct
in Fig. 1, Tm(v)→0 as v→0 as we will see below. Al-
though it is feasible in experiment to ‘‘smooth off’’ the co
ners, as indeed was done in the experiment of Schwabet al.,5

consideration of the worst-case abrupt junction provides
sight into the importance of geometric scattering.

B. Oscillator Q

The Q of an oscillator is given by

Q215
uĖu
vE

, ~8!

where Ė is the rate of energy loss from the mode at fr
quencyv containing energyE. If we consider the oscilla-
tions of a beam supported by two supports, or a cantile
with one support, and estimate the energy loss as the en
transmitted into the supports, we find for the moden

Qn
21;

vg

Lv
Tn , ~9!

wherevg5dv/dk is the group velocity of a wave propaga
ing in the beam, andL is the length of the beam. The exa
evaluation of this quantity depends on the nature of the m
~longitudinal, bending, etc.!. For the longitudinal and tor-
sional modes, which have a linear spectrumv5ck, the fre-
quency of the fundamental mode in a beam of lengthL is of
ordercp/L, the group velocity isvg5c, and so

Qn
21;

Tn

np
. ~10!

For the bending waves with a quadratic spectrumv}k2, the
result is more complicated, but theQ values are similar, and
tend to this form for largen, so we will use this expression a
a fairly accurate general estimate.

We see from Eq.~10! that good isolation of the modeTn
→0 is a criterion for highQ. In practice this expression fo
the dissipation may be an overestimate, since we are ass
ing that all the energy of the mode that enters the supp
either dissipates away, or propagates away to large dista
4-3
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M. C. CROSS AND RON LIFSHITZ PHYSICAL REVIEW B64 085324
so that the energy is not returned to the oscillations of
beam. If this is not the case, the transmission of energy
the support is only one part of the problem—we would a
have to consider the behavior of the vibrational energy in
supports as well.

II. SCALAR MODEL

As a simple model of the elasticity problem consider
single scalar fieldf. This might represent, for example, th
~scalar! ‘‘displacement,’’ and the~vector! ‘‘stress’’ S would
then be proportional to¹f. We will suppose a two-
dimensional domain corresponding to the thin plate. T
leads to a wave equation

]2f

]t2
5c2¹2f, ~11!

with ¹2 the two-dimensional Laplacian andc giving the
speed of propagation of the wave. Stress-free boundary
ditions at the edges are then

n̂•¹f50, ~12!

with n̂ the normal to the edge. Note that this Neuma
boundary condition allows the propagation of an acou
mode@v(k→0)→0# in the bridge as we expect for elast
waves, whereas Dirichlet boundary conditions do not.
example of an elastic system described by such a sc
model is a stretched membrane:f would then be the dis-
placement normal to the membrane andn̂•S is the vertical
force on a unit line in the membrane normal to the direct
n̂.

The scalar problem is sufficiently simple that we can c
culate the transmission across an abrupt junction such a
cavity-to-bridge junction in full detail. This allows us to ga
insight into the more complicated elastic wave problem, a
also allows us to illustrate and test approximation schem
that will be useful there.

The model, Eqs.~11! and~12!, was studied by Angelesc
et al.1 using the mode matching method developed by Sz
and Stone14 for the analogous electron wave calculatio
However, Angelescuet al. implicitly used a rather unnatura
boundary condition (f50) for the end of the cavity at the
junction plane@although Eq.~12! was assumed everywher
else, i.e., on the edges of the beam and cavity parallel to
propagation direction#. We briefly review this work, explain
how this boundary condition was introduced, and then tr
the more natural case@Eq. ~12! everywhere# using the same
methods. This new treatment actually removes a weak lo
rithmic divergence found in the original treatment, and p
duces results at low frequencies that are more consistent
the results of the full elasticity treatment.

A. Model of Angelescuet al.

Assume a simple two-dimensional geometry consisting
a rectangular bridge of transverse dimensionb connected to a
rectangular cavity of transverse dimensionB, Fig. 3. In the
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general three-dimensional case, if the cavity and bridge h
the same thickness, there is no mixing of thez modes, and
the problem separates into a set of two-dimensional pr
lems, one for eachz mode. Here we will only consider the
lowest mode with no structure across thez direction, which
is the only mode excited at low enough temperatures.
xa

c (y) and xm(y) be orthonormal transverse modes satis
ing the stress-free boundary conditions on the edges in
cavity and the bridge, respectively.~For clarity we will de-
note cavity-mode indices by Greek letters, and bridge-m
indices by Roman letters.! The solutions to the wave equa
tion take the form

fm~x,y,t !5xm~y!ei (kx2vt) ~13!

for the bridge, where the frequency of the modev is given
by v25vm

2 1c2k2 with vm5mpc/b the cutoff frequency of
the mth bridge mode. The form is similar for the cavit
modes with the cavity widthB replacing the bridge widthb.
We will denote the frequency separation between brid
modes byD:

D5vm112vm5pc/b. ~14!

Consider a phonon incident on the interface from the c
ity side (x,0), in the modea of the cavity, and with longi-
tudinal wave vectorka

(c) . The solutions in the cavity and
bridge, including the reflected waves in the cavity and
transmitted waves in the bridge, are

f (c)5xa
(c)eika

(c)x1(
b

r abxb
(c)e2 ikb

(c)x cavity,

f5(
m

tamxmeikmx bridge, ~15!

with r ab and tam reflection and transmission amplitudes
be determined. In the above equations,km and kb

(c) are the

FIG. 3. Geometry for the calculation of the transmission coe
cient. Stress-free boundary conditions are assumed on the edg
shown. Angelescuet al. usedf50 boundary conditions on the en
PQ andRSof the cavity. A better choice is to use stress-free co
ditions here as well.
4-4
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ELASTIC WAVE TRANSMISSION AT AN ABRUPT . . . PHYSICAL REVIEW B 64 085324
wave vectors of the transmitted and reflected waves, res
tively, given by the frequency matching condition

v25c2ka
(c)21va

(c)25c2km
2 1vm

2 5c2kb
(c)21vb

(c)2 . ~16!

Note that the sums overm andb in Eq. ~15! include evanes-
cent waves~imaginaryk or k(c)) although only the propagat
ing modes will contribute to the energy transport. The fieldf
and the longitudinal derivative]f/]x have to be matched in
the medium atx50, which leads to the equations

xa
(c)1(

b
r abxb

(c)5(
m

tamxm ,

ka
(c)xa

(c)2(
b

r abkb
(c)xb

(c)5(
m

tamkmxm . ~17!

Equations for the reflection and transmission coefficie
are extracted by integrating Eqs.~17! multiplied by a trans-
verse function,xm or xa

(c) , and using the orthogonality of th
functions over the appropriate domain to extract relati
ships for the mode coefficients. We first multiply one of t
equations with acavity mode xb

(c) , and integrate over the
cavity width, making use of the orthonormality relatio
*dyxa

(c)xb
(c)5dab . In this section we follow Angelescu

et al.1 and perform this operation on thefirst equation~i.e.,
the matching equation for the fieldf!. It is at this stage tha
the boundary condition on the cavity field at the facex50
for uyu.b/2 is introduced. The replacement in the integrati
on the right-hand side

E
2B/2

B/2

dyxa
(c)f~x50!⇒E

b/2

b/2

dyxa
(c)(

m
tamxm ~18!

implicitly forces the boundary conditionf(x50)50 for
uyu.b/2.

Multiplying the first equation in Eq.~17! by a cavity
modex (c), integrating over the cavity width, and using th
orthonormality of the cavity modes leads to

r ab52dab1(
m

tamamb , ~19!

where amb is the overlap of cavity and bridge transver
functions

amb5E
2b/2

b/2

dyxb
(c)xm . ~20!

Equation~19! may now be plugged into the second equ
tion in Eq. ~17!, and the result is

2ka
(c)xa

(c)2(
m

(
b

tamambkb
(c)xb

(c)5(
m

tamkmxm ,

~21!

which, when integrated withxm over the bridge width,
yields
08532
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2ka
(c)ama5(

n
Anmtan1tamkm . ~22!

This is a system of equations that determinestam . In Eq.
~22! the kernelAmn is given by

Amn5(
b

ambanbkb
(c) . ~23!

These equations may be solved for thet ’s, and then the
flux transmission probability from the wave-vectorka

(c) state
of cavity modea to bridge modem is given by

Tam5utamu2
km

ka
(c)

. ~24!

Now summing over all the cavity modes that are propagat
at frequencyv leads to the ‘‘transport transmission coef
cient’’ from the cavity to themth mode Tm(v) ~for v
.vm) by

Tm~v!5 (
a,va

(c)
,v

Tam5 (
a,va

(c)
,v

utamu2
km

ka
(c)

, ~25!

with km(v) and ka
(c)(v) given by Eq.~16!. This also gives

the energy transmission coefficient from themth bridge
mode to the cavity, by the usual reciprocity arguments.

Equations~23! and~25! involve sums over cavity modes
We may either evaluate the sums directly for a chosen va
of the width ratioB/b, or take the limit of a large cavity
width B→` when the sums are replaced by integrals. W
calculate the matrixAmn for m,n,Nmax with Nmax some
upper cutoff for the number of bridge modes retained a
invert theNmax3Nmax matrix system numerically to findtam
and henceTm(v).

There is a simple approximation14 that provides an ana
lytic form for the solution to Eq.~22! that is in reasonably
good agreement with the exact solution. The approximat
derives from three properties ofama . First,ama50 unlessm
and a have the same parity. In other words, even mod
couple to even modes and odd modes to odd modes o
Second, as a function ofa, ama is sharply peaked aroun
a5mB/b, the width of the peak being of orderB/b. And
third, aam must satisfy the completeness relation

(
a

amaana5dmn . ~26!

The first two properties permit the key approximatio
namely, thatAmn}dmn ~since the product of two function
peaked at different channelsm,n is very small andAmn is
rigorously zero whenm and n are different parity modes!.
Then we only need the diagonal part ofA

Amm5(
b

amb
2 kb

(c) , ~27!

which is simply a weighted average of the complex wa
vector over the narrow range of reflected cavity modes
4-5
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M. C. CROSS AND RON LIFSHITZ PHYSICAL REVIEW B64 085324
which amb is significant.~Note(bamb
2 51 by completeness.!

In this case Eq.~22! separates into

2ka
(c)ama5Ammtam1kmtam ~28!

and then

tam5
2ka

(c)ama

Amm1km
. ~29!

The flux transmission probability from cavity modea to
bridge modem is given in this approximation by

Tam5utamu2
km

ka
(c)

.
4ka

(c)kmuamau2

~km1Km!21Jm
2

, ~30!

whereKm5ReAmm andJm5Im Amm. The energy transmis
sion coefficient is

Tm~v!. (
a,va

(c)
,v

4ka
(c)kmuamau2

~km1Km!21Jm
2

5
4Kmkm

~km1Km!21Jm
2

.

~31!

We now use the explicit form of the transverse modes
evaluateTm(v). With the boundary condition]f/]y50 at
the y boundaries we have

xm~y!55A
2

b
cosS mpy

b D m even,

A2

b
sinS mpy

b D m odd,

~32!

xa
c ~y!55A

2

B
cosS apy

B D a even,

A2

B
sinS apy

B D a odd,

~33!

FIG. 4. Transmission coefficientT0 coupling the lowest bridge
mode to the cavity modes as a function of the reduced frequenc
the modev/D with D the splitting between bridge modes at ze
wave vector. Curves for cavity wave-number cutoff equal to 20,
80, 100, and 500 timespb21 ~with b the width of the bridge! show
the weak dependence on this cutoff.
08532
o

with m and a integers, with the special casex0(y)51/Ab
andx0

c(y)51/AB. Theama are easily calculated:

ama50 m,a not both even or odd, ~34!

ama5Ab

BF sinS apb

2B
2

mp

2 D
apb

2B
2

mp

2

1

sinS apb

2B
1

mp

2 D
apb

2B
1

mp

2

G m,a evenÞ0, ~35!

ama5Ab

BF sinS apb

2B
2

mp

2 D
apb

2B
2

mp

2

2

sinS apb

2B
1

mp

2 D
apb

2B
1

mp

2

G m,a oddÞ0, ~36!

a0a5A2b

B F sinS apb

2B D
apb

2B

G a evenÞ0, ~37!

am050 mÞ0, ~38!

a0051. ~39!

For largem,a ~both even or both odd! we can approximate

ama.Ab

B

sinS apb

2B
2

mp

2 D
apb

2B
2

mp

2

. ~40!

The ama are indeed sharply peaked as a function of cav
mode numbera. The largem approximation is essentially
identical to the result in the electronic case.14 However the
small, second term in the braces in Eqs.~35! and ~36! ig-
nored in this approximation appears with the opposite sign
our application. This turns out to render the sum over
cavity modesb appearing in Eq.~23! weakly ~logarithmi-
cally! divergent for largeb. ~Note thatkb

(c) is imaginary here,
so this divergent contribution is to ImAmn and to the compo-

of

,

4-6
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nentJm of the diagonal terms.! We must impose some uppe
cutoff to the sum to achieve finite results. Physically w
might suppose such a cutoff may come from the breakdo
of the sharp corner approximation at short enough scale
ultimately, in a perfectly fabricated mesoscopic system, fr
the atomic nature of the material leading to a finite num
of modes.

Results for the transmission coefficient of the lowe
bridge modeT0(v) are shown in Fig. 4. There is only a wea
dependence on the cavity sum cutoff. At small frequen
T0(v) is proportional tov3. The results shown were calcu
lated for the case of an infinitely wide cavity~sums over
cavity modes replaced by integrals!. Results for finite widths
~e.g.,B/b520) are very similar. The first 11 bridge mode
~six even modes! were retained in the matrix inversion fo
the results shown: increasing this number did not change
results significantly showing thatAmn indeed decreases rap
idly for increasing um2nu. Note that T0(v) rapidly ap-
proaches unity as the frequency grows. There is a sm
(&10%) decrease at the frequencyv52D where thesecond
even bridge mode becomes propagating, and similar feat
of reducing size occur at subsequent integral multiples
2D. There is no coupling between even and odd modes
the symmetric geometry used. The comparison between
results from the full matrix inversion and the diagonal a
proximation is shown in Fig. 5. The diagonal approximati
gives results good to about 10%. However this compari
depends on the cavity wave-number cutoff, since the dia
nal approximation depends rather more strongly on this
rameter than for the full results shown in Fig. 4. Note that
feature atv52D due to the interaction between differe
bridge modes is absent in the diagonal approximation.

FIG. 5. Transmission coefficientT0 for the lowest bridge mode
in the Angelescuet al. scalar model calculated using the~exact!
matrix diagonalization~points! and the diagonal approximatio
~crosses! for a cavity-mode wave-vector cutoff 40pb21, with b the
width of the bridge. The diagonal approximation shows a somew
stronger dependence on this cutoff than shown by the exact res
so that this comparison will vary as we change the cutoff assu
tion.
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B. Stress-free ends

1. Mode matching calculation

We now redo the scalar analysis, enforcing the bound
condition n̂•¹f50 on the end of the cavityx50, uyu
.b/2. This corresponds to a stress-free boundary eve
where.

The analysis proceeds as before up to Eq.~17!. But now
we first multiply thesecondequation~for the continuity of
]f/]x) by xb

(c) , and integrate over the cavity width. Th
enforces the boundary condition on the cavity face

n̂•¹f50 for x50 and uyu.b/2. ~41!

The orthogonality of thexb
(c) gives

r abkb
(c)5ka

(c)dab2(
m

tamkmamb . ~42!

Use this equation to eliminater ab from the first of Eq.~17!

2xa
(c)2(

n
(
b

tan„kn /kb
(c)
…anbxb

(c)5(
m

tanxn ~43!

and integrate withxm over the bridge width to yield

2ama5(
n

Āmnkntan1tam , ~44!

where

Āmn5(
a

amaana /ka
(c) . ~45!

Again we can solve the equation fortam , Eq. ~44!, numeri-
cally or by using the diagonal approximation forĀmn . It is
easily seen that the extra inverse powers ofka

(c) in Āmn ren-
der the sum overa convergent, unlike the case forAmn . The

at
lts,
p-

FIG. 6. Transmission coefficientT0 coupling the lowest bridge
mode to the cavity modes as a function of the reduced freque
v/D in the scalar model with stress-free boundaries. The m
graph is for an infinite cavity width. The inset shows the compa
son with results for a finite cavity width (B520.217b).
4-7
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energy transmission coefficient from themth bridge mode
remains given by Eq.~25!. The diagonal approximation
Āmn.Āmmdmn now leads to

Tm~v!.
4K̄mkm

„kmK̄m11…21 J̄m
2 km

2
, ~46!

with J̄m5ReĀmm and K̄m5Im Āmm. The result forT0(v)
for the lowest bridge mode is shown in Fig. 6 taking the lim
of an infinite cavity width@the sums in Eq.~45!, etc., evalu-
ated as integrals#. Again the transmission coefficient grow
rapidly, approaching close to unity as the frequency gro
for example reaching 0.9 by aboutv;0.5D. Note the impor-
tant difference from the previous scalar model that the lo
frequency asymptotic behavior islinear, T0(v)}v, rather
than cubic as obtained there, and soT0(v) approaches unity
more rapidly than anticipated in that work. A small reducti
in T0(v) ~by about 3%) nearv52D and by smaller
amounts at higher integral multiples of this frequency
apparent. An analysis of the curve in this region show
square-root dependence onv22D, corresponding to a cou
pling in the full matrix calculation to the second bridg
mode, and to the square-root growth inT2(v) that occurs
here. The diagonal approximation~not shown! gives results
that are indistinguishable on the figure for 0<v<2D, but
the small decrease abovev52D does not appear in thi
approximation.

The inset in Fig. 6 shows the comparison with results
a finite cavity width. The results are quite surprising, wi
resonancelike features occurring whenever the freque
passes through the cutoff frequency of acavity mode. This
can be traced to the inverse power ofk(c) occurring in Eq.
~25! and Eq.~45!. Sincek(c) goes to zero asAv2vn

(c) these
singularities are integrable, and the features disappear in
limit of infinite cavity width. Smoothing over the feature
~e.g., taking the average over bins between successivevn

(c))
gives points that follow the smooth curve for the infini

FIG. 7. Values of the transmission coefficients from thenth
bridge mode to the cavity as a function of (v2vn)/D with vn the
cutoff frequency for thenth mode andD the spacing between mod
cutoff frequenciesD5vn112vn . The long-dashed line shows th
square-root dependence near cutoff for thenÞ0 modes. The short-
dashed line is the linear dependenceT0(v).2pv/D expected for
the lowest mode.
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cavity width closely. Integrating the effect of the transm
sion coefficient in the thermal conductance over the ther
factors in Eq.~7! will effectively perform this smoothing, so
that the features will not be apparent in the thermal meas
ments. The sharp features are presumably also smoothe
if the junction is not perfectly abrupt. Results forTn(v) for
other values ofn are shown in Fig. 7. It is now straightfor
ward to calculate the thermal conductivity using Eq.~7!. We
focus on the low-temperature limit where the universal res
for K/T applies in the ideal limit. With no reduction in th
thermal transport due to scattering at the junction the plo
K/T as a function of temperature develops a plateau at
temperatures at the universal valuep2kB

2/3h ~see Fig. 8!. In
this regime the conductivity is dominated by the acous
mode withv→0 ask→0. Scattering at the junction reduce
the transmission of the smallv,k waves, so that the value o
K/T is reduced from the no-scattering value. As can be s
from Fig. 8 this reduction begins to occur as the temperat
is lowered at about the same temperature at which the
teau in the ideal case begins to develop. This suggests
the plateau at the universal value ofK/T will not be well
developed for the abrupt junction. The full calculation usi
Eq. ~7! and the reduced transmission coefficients of all
modes~solid curve in Fig. 8! shows that this is the case—
including the effects of scattering at the abrupt juncti
yields aK/T curve that tends smoothly to zero asT→0. This
result clearly demonstrates the importance of using smo
junctions between the bridge and the reservoirs, such as
done in the experiments of Schwabet al.,5 if the universal
value ofK/T is to be apparent.

2. Long-Wavelength Calculation

Although we have performed the full calculation of th
transmission coefficient for the scalar case, this will not

FIG. 8. Thermal conductivity divided by temperature reduc
by the zero-temperature universal valuep2kB

2/3h as a function of
the reduced temperaturekBT/\D: solid curve—full calculation in-
cluding the transmission losses due to the abrupt junction for str
free face; long-dashed curve—contribution from the lowest~acous-
tic! mode, showing the reduction at low temperatures due to
scattering at the abrupt junction; dash-dotted curve—ideal re
from all modes with full transmission; dotted line—low
temperature asymptotic slope predicted from the low-frequency
havior of the transmission coefficient. The short-dashed cur
shows the result including scattering of the calculation of Angele
et al.1
4-8
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ELASTIC WAVE TRANSMISSION AT AN ABRUPT . . . PHYSICAL REVIEW B 64 085324
possible for the elasticity-theory calculation. We therefo
introduce a simple analytic technique for establishing
low-frequency limit ofT0(v) that can be extended to the fu
elasticity description.

The approach relies on the poor transmissionT0(v)→0
for v→0 ~long-wavelength waves are strongly affected
the abrupt junction! to treat the transmission perturbativel
First the bridge mode is calculated assuming perfect refl
tion, i.e., isolated from the supports. A simple analysis sho
that the appropriate boundary condition on the end of
bridge is zerodisplacement~rather than zero stress!. If we
now ‘‘reconnect’’ the bridge to the supports, the stress fie
at the end face of the bridge act as radiation sources of w
into the cavity. The total power in these waves for unit in
dent amplitude in the bridge gives us the transmission c
ficient. The total power radiated may be readily calculated
integrating the product of the stress source and resulting
locity across the end face of the bridge.

To establish the appropriate boundary conditions in
T0(v)→0 limit we first consider afinite cavity width, i.e., an
abrupt junction between a bridge of widthb for x,0 and a
cavity of finite widthB @b for x.0 in the limit v,k→0. ~It
is simplest here to consider the transmission from bridge
cavity, and we have reversed the sense of thex coordinate
compared to Sec. II B 1.! For x,0 we consider an inciden
wave of unit amplitude and a reflected wave of amplitudr

f5eikx2 ivt1re2 ikx2 ivt, x,0. ~47!

For x.0 there is only the transmitted wave

f5teikx2 ivt, x.0. ~48!

Here the wave numbersk are fixed by the dispersion relatio
v5ck, which is the same on both sides of the junction
the acoustic mode.

The reflection and transmission amplitudes can be ca
lated by a simple matching atx50. ~This is equivalent to a
wave impedance calculation.! Matching the displacemen
field f gives

11r 5t ~49!

and matching the total force gives

b~12r !5Bt. ~50!

Note that the force~the integrated stress! is conserved be-
cause there are no additional stresses on the cavity fac
uyu.b/2: this matching would not be appropriate for th
boundary condition used by Angelescuet al.1

Thus we find

r 52
B2b

B1b
, t5

2b

b1B
. ~51!

These expressions are good forkB,kb!1. In this limit the
matching conditions can be applied outside of the reg
close to the junction where the fields are perturbed from th
asymptotic forms, Eqs.~47! and ~48!, but before the expo-
nential phase factors of the wave propagation have sig
cantly changed. ForB@b these expressions reduce tor .
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21, t.0, i.e., strong mismatch and almost perfect reflect
with a sign change. Note that atx50 this impliesf.0, i.e.,
zero displacement boundary conditions, together w
]f/]x.2ik for unit incident amplitude. We now use thi
result as the basis of the calculation of the transmission fk
small but nonzero and the limitB→`.

The transmission atkÞ0 is calculated as a radiation prob
lem, namely, via the power radiated by the end of the brid
into the cavity. The zeroth-order approximation for the so
tion in the bridge is the perfect reflection result calculat
above, giving the stress radiation source on the wall of
cavity

s~y!5H ]f/]x.2ike2 ivt for uyu,b/2,

0 for uyu.b/2,
~52!

where the second line is just the stress-free boundary co
tion

]f/]x50 for x50,uyu.b/2. ~53!

The problem of the radiation due to a stress source on
boundary of an elastic half space is known as the La
problem in elasticity theory, and has been considered
many authors, for example, see Ref. 17. The radiation fi
can be calculated by standard Fourier-transform techniq
The solution in the cavity forx.0 can be written as

f5e2 ivt
1

2pE2`

`

f̃~z!eiqxei zydz, ~54!

with

q5HAk22z2 for uzu<k,

iAk22z2 for uzu.k
~55!

corresponding to propagation or exponential decay aw
from the interface. The transformf̃(z) is given by matching
to the known]f/]x at x50 yielding

iqf̃~z!5E
2`

`

s~y!e2 i zydy. ~56!

The power radiated is the product of the stress]f/]x and the
velocity ]f/]t across the radiation source

P5K E
2b/2

b/2 ]f

]t

]f

]x
dyL

x50

, ~57!

where the^•••& denotes the time average. For the fiel
varying ase2 ivt this gives

P5
1

2
ReF2 ivE

2b/2

b/2

f~y!s* ~y!dyGU
x50

. ~58!

Inserting the Fourier expression forf(x50),

P5
v

4p
ImE

2`

`

dzf̃~z!E
2`

`

dy s* ~y!ei zy ~59!
4-9
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5
v

4p
ImE

2`

`

dz
1

iq U E
2`

`

s~y!e2 i zydyU2

.

~60!

Since the transverse wave vectorz is limited byz,k for the
integrand to be imaginary~corresponding toq real, i.e.,
propagating waves in the cavity!, ands(y) is nonzero only
for uyu,b/2, an expansion inkb!1 is given by the expan
sion

E
2`

`

s~y!e2 i zydy5s02 i zs11•••, ~61!

wheresi are successive moments of the source

s05E s~y!dy, ~62!

s15E s~y!ydy. ~63!

We will need only the leading-order term, i.e.,s0 if the
source is parity symmetric iny, s1 if the source is antisym-
metric. In particular for the present cases052ikb so that

P5
v

2pE0

k

dz
4k2

Ak22z2
. ~64!

Normalizing by the power in the incident wave1
2 bvk gives

the transmission coefficient

T0~v!5
4kb

p E
0

k 1

Ak22z2
dz. ~65!

The integral expression forT0 can be easily understoo
physically as integrating over the power radiated into
continuum of waves, traveling at the wave propagation sp
c, and propagating at all angles into the half space. For
scalar model there is a single type of propagating wave. W
the full elasticity theory we will see a similar result, but wi
a number of propagating waves contributing to the pow
radiated.

Performing the integral gives

T0~v!52kb52vb/c for kb!1. ~66!

This result confirms thelinear dependence onv for smallv,
as shown in Fig. 7.

III. THIN-PLATE THEORY

A useful model of the mesoscopic geometry, that is m
tractable than a fully three-dimensional elasticity calculati
is to assume a thin-plate geometry. Thus we take the ela
structure to be carved from a thin plate of uniform thickne
d, which is taken to be small with respect to the other dim
sions and also with respect to the wavelength of the ela
waves. In this model the mode frequency cutoffs atk50,
important in the thermal conductance, can be readily ca
lated ~for most of the modes they are given by simple an
lytic expressions!. In addition, although the mode structure
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quite complicated, involving the mixing of longitudinal an
transverse components by reflection at the edges, exp
expressions for the transverse structure of the modes in te
of a finite sum of sinusoidal functions can be written dow
Compare this with a full three-dimensional analysis, wher
finite-dimensional representation of the modes is not p
sible. In addition to the scattering at an abrupt junction p
sued here, the thin-plate limit will permit an analysis of ph
nomena such as the scattering of the waves off surface
bulk imperfections, an issue that is pursued elsewhere.15

We first review the general elastic theory for waves in
thin plate, and confirm the expected dispersion relations
the acoustic modes of a rectangular beam~i.e., the ‘‘bridge’’!
in the long-wavelength limit, and then use the equations
study the coupling of long-wavelength modes across
abrupt bridge-support junctions.

A. Review of elastic theory and modes

The elasticity of an isotropic solid is summarized by t
relationship between the stress tensorT and the strain tenso

Ti j 52KQd i j 22mS i j . ~67!

HereQ is the dilation andS is the shear strain,

Q5
]ux

]x
1

]uy

]y
1

]uz

]z
, ~68a!

S i j 5
1

2 S ]ui

]xj
1

]uj

]xi
D2

1

3
Qd i j , ~68b!

with u(x) the displacement andK andm elastic constants.
For a thin plate of thicknessd in the xy plane, linear

elasticity theory can be separated into equations for the
mal displacementuz5w(x,y) of the plate and for the in-
plane displacements averaged over the depthu(x,y)
5(u,v) with u5^ux(x,y,z)&z and v5^uy(x,y,z)&z , all
functions of just two spatial variables. This is done by a
suming, for in-plane wave vectorsk such thatkd!1, that the
stresses in the vertical directionSz j , which must be zero a
the nearby stress-free top and bottom surfaces, may be p
zero everywhere. This allows the variation of the stra
across the thickness of the plates to be eliminated in term
the variablesu,v,w. For example, settingTzz to zero gives

]uz

]z
52

K2
2

3
m

K1
4

3
m

S ]u

]x
1

]v
]y D . ~69!

Thus the modes separate into modes with in-plane polar
tions, and modes with polarizations normal to the pla
~flexural modes!. The full development can be found in an
standard text on elasticity, for example Landau and Lifshit16

or Graff.18 Here we collect the main results.
4-10



he

so

e

lly
ve

ent

nt

wo-

c
ree-
n
et
,

’
sults

pri-

on-

the

in-
s-

led in
la-

to

ELASTIC WAVE TRANSMISSION AT AN ABRUPT . . . PHYSICAL REVIEW B 64 085324
1. In-plane polarization

Using relationships such as Eq.~69! leads to an effective
two-dimensional elasticity theory for displacements in t
plane, summarized by the stress-strain relationship

Ti j
(2)52K̄Q (2)d i j 22m̄S i j

(2) , ~70!

where the indicesi , j now run only overx and y, Q (2) and
S(2) are the two-dimensional dilation and shear strain ten

Q (2)5
]ux

]x
1

]uy

]y
, ~71a!

S i j
(2)5

1

2 S ]ui

]xj
1

]uj

]xi
D2

1

2
Q (2)d i j ~71b!

and the effective two-dimensional elastic constants are

m̄5m, ~72a!

K̄5
3Km

K1
4

3
m

. ~72b!

The elastic waves with in-plane polarization are then giv
by the equation of motion

r
]2u

]t2
52¹'•T(2) ~73!

5K̄¹'~¹'•u!1m̄¹'
2 u, ~74!

with “' the horizontal gradient operator. In a horizonta
infinite sheet there are longitudinal and transverse wa
with speeds

cL
25

K̄1m̄

r
5

4m

r

S K1
1

3
m D

S K1
4

3
m D , ~75a!

cT
25

m̄

r
5

m

r
. ~75b!

Alternatively, introducing Young’s modulusE and the Pois-
son ratios ~with 21<s< 1

2 ) so that

K5
E

3~122s!
, m5

E

2~11s!
, ~76!

we have

cL
25

E

r~12s2!
, ~77a!

cT
25

E

2r~11s!
. ~77b!
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Rather than using the Poisson ratio directly it is conveni
to introduce the parameter for the ratio of wave speeds

r 5
cL

cT
5A 2

12s
.1. ~78!

In terms of the component displacementsu, v and the pa-
rameterr the elastic wave equation can be written

1

cT
2

]2u

]t2
5r 2

]2u

]x2
1

]2u

]y2
1~r 221!

]2v
]x]y

, ~79a!

1

cT
2

]2v

]t2
5

]2v

]x2
1r 2

]2v

]y2
1~r 221!

]2u

]x]y
. ~79b!

A result that we will find useful later is for the compone
displacements in the solutions for the propagating waves

u5H u0~1,2kTx /kTy!e
i (kT•x2vt) transverse wave,

u0~1,kLy /kLx!e
i (kL•x2vt) longitudinal wave.

~80!

We note for completeness that in athree-dimensional
elastic medium, waves polarized in thexy plane having noz
dependence are also described by an effective t
dimensional elasticity theory as in Eq.~70! but now with
effective elastic constantsK̄5K1 1

3 m, m̄5m so thatcL
2/cT

2

52(12s)/(122s). The difference in the effective elasti
constants in the two cases arises because in the th
dimensional medium restricted to noz dependence, there ca
be no expansion in thez direction to relieve the stresses s
up by the strain in thexy plane. In many elasticity textbooks
the ‘‘two-dimensional elasticity’’ and ‘‘thin-plate theory’
discussed correspond to this case. We can relate these re
to the thin-plate geometry we are considering by appro
ately transforming the effective elastic constants.

For a finite plate we must apply stress-free boundary c
ditions at the side edges

n̂•T(2)50, ~81!

with n̂ the normal to the edge. For waves propagating in
x direction in a long finite plate of widthb the no-stress
boundary condition at the edges of the plate aty56b/2 are
therefore

Txy
(2)505m̄S ]u

]y
1

]v
]xD , ~82a!

Tyy
(2)505m̄S r 2

]v
]y

1~r 222!
]u

]xD . ~82b!

The boundary conditions have the effect of reflecting
cident longitudinal waves into both longitudinal and tran
verse reflected waves, so that these waves become coup
the finite geometry, leading to a complicated dispersion re
tionship. The solutions propagating in thex direction de-
couple into either an even or odd signature with respecty
reflection, and take the form@using Eqs.~80!#
4-11
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M. C. CROSS AND RON LIFSHITZ PHYSICAL REVIEW B64 085324
u(e)5@aT
(e)cos~xTy!1aL

(e)cos~xLy!#ei (kx2vt), ~83a!

v (e)5@~2 ik/xT!aT
(e)sin~xTy!

1~ ixL /k!aL
(e)sin~xLy!#ei (kx2vt) ~83b!

and

u(o)5@aT
(o)sin~xTy!1aL

(o)sin~xLy!#ei (kx2vt),
~84a!

v (o)5@~ ik/xT!aT
(o)cos~xTy!

2~ ixL /k!aL
(o)cos~xLy!#ei (kx2vt), ~84b!

wherexT,L are given through the dispersion relation

K25v2/cT
25k21xT

25r 2~k21xL
2! ~85!

and we have definedK5v/cT , the wave number of atrans-
verse waveat the frequencyv in an infinite plate. The values
of xT,L may be real or imaginary. Note that each wave co
bines both shear (xT) and compressional (xL) distortions,
which are mixed by the reflection of the plane waves off
edges.

The amplitudesaT,L
(e),(o) must be adjusted to satisfy th

boundary conditions aty56b/2, Eqs.~82!. Substituting into
these conditions leads to a system of two homogene
equations foraT

(e) ,aL
(e) ~and two foraT

(o) ,aL
(o)) and so a con-

sistency condition that leads to a transcendental equation
v for eachk, known as the Rayleigh-Lamb equations.20 For
the even-signature modes the transcendental equation is

~k22xT
2!2 tan

xTb

2
14k2xTxL tan

xLb

2
50. ~86!

For the odd-signature modes the transcendental equatio

4k2xTxL tan
xTb

2
1~k22xT

2!2 tan
xLb

2
50. ~87!

FIG. 9. Dispersion relation of in-plane polarized modes for
thin plate. The wave numbers are scaled by the bridge widthb, and
the frequencies byb/cT with cT the transverse wave speed in
large, thin plate. The dashed lines are the speeds of the trans
and longitudinal waves in a large thin plate. The value of the P
son ratio iss50.33.
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For a given value of the speed ratior these equations can b
solved numerically forv(k). The spectrum for the value o
r 5A3 corresponding to GaAs (s. 1

3 ) is shown in Figs. 9
and 10.

At large values ofk the slopes of the curves, except fo
the lowest two, asymptote tocL or cT corresponding to the
freely propagating waves in the plate.~This is not yet fully
evident at the values ofv,k plotted in Fig. 9, but is con-
firmed by extending the numerics to higher values.! The low-
est two modes on the other hand asymptote to a slopecS less
than both cT and cL . In this case for largek we have
tan(xT,Lb/2)→ i in Eqs. ~86! and ~87! so that the slopecS
5r ScT is given by the solution of

4A12r S
2A12r S

2/r 25~22r S
2!2. ~88!

This is an edge wave analogous to the Rayleigh wave on
surface of a three-dimensional slab of material. Forr 5A3,
Eq. ~88! givescS5A222/A3cT .

The values of the finite-frequency intercepts of t
‘‘waveguide’’ modes fork→0 can also be calculated analyt
cally. For the even mode intercepts, Eq.~86! is satisfied at
k→0 by tan(xTb/2)50 or tan(xLb/2)→`. Similarly Eq.
~87! is satisfied by tan(xLb/2)50 or tan(xTb/2)→`. Thus
the zero wave-number intercepts are given by the sim
expressions for transverse and longitudinal wave propaga

vn
(T)5npcT /b, vn

(L)5rnpcT /b5npcL /b. ~89!

~These simple results hold because fork50 there is no in-
terconversion of longitudinal and transverse waves on refl
tion at the edges.! The shapes of the curves betweenk50
and the large-k asymptotes are quite complicated, with va
ous mode crossings and regions of anomalous disper
dv/dk,0.

We are particularly interested in the long-waveleng
modesk→0. The dispersion relation in this limit can b

rse
-

FIG. 10. Dispersion curves for the long-wavelength in-pla
modes of a thin-plate beam of widthb for Poisson ratio1

3 ~wave
speed ratioA3). Solid lines: numerical results, long-dashed lin
small-k linear dispersion for compression mode, long-short-sh
dashed: linear dispersion for longitudinal wave in infinite pla
short dashed: linear dispersion for edge mode, and long-s
dashed: quadratic dispersion for small-k bending mode. Note the
anomalous dispersion of the fourth mode at smallk.
4-12
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ELASTIC WAVE TRANSMISSION AT AN ABRUPT . . . PHYSICAL REVIEW B 64 085324
found by Taylor expansion of the tan functions in Eqs.~86!
and ~87!. The even mode tends to

v→2A12r 22cTk5AE/r k. ~90!

This agrees with the usual expression for the stretching m
of a rod. This is not the same as the dispersion for the b
longitudinal modes in the thin plate,v5cLk, but the speeds
are quite close fors50.33. On the other hand the odd mo
gives aquadraticdispersion, characteristic of bending mod
of beams,

v→Ar 221

3r 2
bcTk2. ~91!

~This is given by expanding the tan functions up to cu
order.! Rod-bending theory gives the expressionv/k2

5AEI/rA with I the areal moment of inertia about the mi
line, andA the cross-section area. For the rectangular be
we haveI /A5b2/12, and using (12r 22)cT

25E/2r shows
the correspondence.

2. Flexural modes

The flexural modes are most easily derived by using re
tionships such as Eq.~69! to derive an expression for th
energy of transverse displacements16

F5
1

2
DE E F ~¹'

2 w!212~12s!H S ]2w

]x]yD 2

2
]2w

]x2

]2w

]y2 J Gdxdy, ~92!

where

D5
Ed3

12~12s2!
~93!

is the flexural rigidity of the plate of thicknessd. The equa-
tion of motion and boundary conditions are given by sett
the variation of the energy with respect to displaceme
w(x,y) to zero. For a region with rectangular boundaries
x56a/2 andy56b/2 the variation is

dF5DE E ¹'
4 v dw dxdy2E dyH dwF ]3w

]x3

1~22s!
]3w

]x]y2G2
]dw

]x F ]2w

]x2
1s

]2w

]y2 G J U
x52a/2

x5a/2

2E dxH dwF ]3w

]y3
1~22s!

]3w

]x2]y
G

2
]dw

]y F ]2w

]y2
1s

]2w

]x2 G J U
y52b/2

y5b/2

. ~94!
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The first term gives the effective force per unit area on
plate, and hence the equation of motion

rd
]2w

]t2
1D¹'

4 w50. ~95!

The last two terms on the right-hand side are boundary te
given by integration by parts. Physically they give the wo
done at the boundaries by the vertical force per length
boundaryVi against the vertical displacementdw and by the
moment per unit lengthMi against the angular displaceme
of the plate21 2¹W iw. Thus atx5a/2 we have

Vx52D
]

]x S ]2w

]x2
1~22s!

]2w

]y2 D , ~96a!

Mx52DS ]2w

]x2
1s

]2w

]y2 D , ~96b!

and aty5b/2

Vy52D
]

]y S ]2w

]y2
1~22s!

]2w

]x2 D , ~97a!

M y52DS ]2w

]y2
1s

]2w

]x2 D . ~97b!

For free edges, these quantities must be set to zero. In a
tion to the force per unit length there are also point forc
localized at the corners, e.g., atx5a/2,y56b/2 ~Ref. 19!.

Fc562D~12s!
]2w

]x]y
. ~98!

These must be included when we are calculating the t
force acting across the width of the beam, for example,

F5E
2b/2

b/2

Vx dy1Fc~b/2!1Fc~2b/2! ~99!

5
]

]xE2b/2

b/2

Mx dy ~100!

and the latter equality shows the consistency with the m
roscopic equation for the rotational equilibrium of the bea
~see Sec. III B 2 below!.

We now calculate the modes propagating in thex direc-
tion w(e),w(o)}ei (kx2vt) in the bridge of widthb. Again the
modes have either even or odd signature with respecty
reflections. Since the wave equation is fourth order in
spatial derivatives, for each frequencyv there aretwo even
or odd components. The solutions to the wave equation
~even!

w(e)5@a1
(e)cosh~x1y!1a2

(e)cosh~x2y!#ei (kx2vt)

~101!

and ~odd!
4-13
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M. C. CROSS AND RON LIFSHITZ PHYSICAL REVIEW B64 085324
w(o)5@a1
(o)sinh~x1y!1a2

(o)sinh~x2y!#ei (kx2vt),
~102!

where

x65Ak26K2, ~103!

and we have written

Ard/D v5K2. ~104!

Again the dispersionv(k) and the ratio of amplitudes
a1 /a2 are determined by the requirement of consisten
with the boundary conditions at the edgesy56b/2, Eq.
~97!. This gives for the even modes

@K21~12s!k2#2x2tanh~x2b/2!

5@K22~12s!k2#2x1tanh~x1b/2! ~105!

and for the odd modes

@K21~12s!k2#2x2coth~x2b/2!

5@K22~12s!k2#2x1coth~x1b/2!. ~106!

For v→0 we can expand the hyperbolic functions and so
algebraic equations to determine the dispersion curve.

For the even mode this givesK2/k25A12s2 yielding the
quadratic dispersion of the beam bending mode

v5AD~12s2!

rd
k25A E

12r
dk2, ~107!

agreeing with the expression from simple rod theory. We
follow this mode to largek where we find again a quadrat
dispersion but with a different slope

K2/k2→A123s12A122s~12s!

~12s!2~31s!
. ~108!

This is again an edge wave~now an edge bending wave!.
The intersections of the higher modes with the freque
axis are given byk2→0, x2→ iK , x1→K so that Eq.~105!
reduces to

2tan~Kb/2!5tanh~Kb/2!. ~109!

The solutions are well approximated byKb5(3/212n)p
@i.e., v5AD/rd(3/212n)2p2/b2# for n50,1••• ~with an
error of less than1

2 % for the worst casen50).
For the odd mode, Eq.~106! gives forv,k→0 the disper-

sion relation for the torsion mode

v5AD

rd
2A6~12s!

k

b
52Am

r

d

b
k, ~110!

which agrees with the usual result calculated in elastic
theory. The large-k asymptote of this mode is the same
Eq. ~108!. The intersections of the higher odd modes with t
frequency axis are from Eq.~106! given by

tan~Kb/2!5tanh~Kb/2!. ~111!
08532
y

e
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The solutions are well approximated byKb5(5/212n)p
@i.e., v5AD/rd(5/212n)2p2/b2# for n50,1•••.

Combining the even and odd modes, the zero wa
number frequency intercepts can be written

vn.cT

1

A6~12s!
S 3

2
1nD 2

p2d/b2. ~112!

The dispersion curves fors5 1
3 corresponding to GaAs

are shown in Figs. 11 and 12.

B. Transmission coefficient in the infinite-wavelength limit

The transmission coefficients for the acoustic modes
the long-wavelength limit and for finite cavity width can b
readily calculated by the wave matching methods as for
scalar waves. We investigate the transmission of very lo

FIG. 11. Dispersion relation of the flexural modes of a thin pla
with Poisson ratios50.33. The wave numbersk are scaled by the
width b and the frequencies by (rd/D)1/2b2. Note that the modes
have approximately a quadratic wave-number dependencev.vc

2

1ak2 with a.AD/rd, corresponding to the ‘‘bulk’’ flexural wave
The two lower modes have a different form: one mode~the torsion
mode! has a linear dispersion relation at low frequenciesv}k and
both modes asymptote tov5bk2 at largek with b,a correspond-
ing to an edge wave. It turns out thata.b for the particular value
of s used here.

FIG. 12. Dispersion relation as in Fig. 11 but at smallv,k. Note
that the abscissa is proportional tok in this plot. Solid lines: nu-
merical results, long-dashed line: expected quadratic dispersion
rod-bending mode, and short-dashed line: expected linear dis
sion for rod-torsion mode.
4-14
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ELASTIC WAVE TRANSMISSION AT AN ABRUPT . . . PHYSICAL REVIEW B 64 085324
wavelength modes at the abrupt junction between the br
(x,0) of width b and the cavity (x.0) of finite widthB. It
is easiest to evaluate the wave fields by simple macrosc
arguments. As well as providing the long-wavelength limit
the transmission coefficients, these results also provide
basis for calculating the leading-order finitek corrections,
following the same methods as in Sec. II B 2.

1. Compression modes

The compressional~extension! modes for kb→0 are
given by the simple one dimensional calculation16

]2u

]t2
5cE

2 ]2u

]x2
, ~113!

wherecE
25E/r.

For x,0 we have incident and reflected waves

u5~eikx1re2 ikx!e2 ivt ~114!

and forx.0 a single transmitted wave

u5teikxe2 ivt, ~115!

wherev/k5cE . We match the displacementu and the total
force on either side of the interface

11r 5t, ~116!

ikb~12r !5 ikBt. ~117!

Note that the force matching requires that the end surfac
the cavity be stress free. This gives

t5
2

11h
, r 52

h21

h11
, ~118!

whereh is the width ratioh5B/b. In the limit h→` we find
r→21, t→0, i.e., perfect reflection with a sign change
the displacement. This implies that at the junctionx50 we
haveu.0 and the stressE]u/]x.2ikEe2 ivt.

2. Bending modes

At long wavelengths both in-plane and flexural bendi
modes are given by equations for the total forceF and the
total momentM on each cross section.19 The moment from
opposite forces on each end of a small element of the b
must cancel the net moment from the forces on the face

F5
]M

]x
. ~119!

~Since the moments scale as the length of the elementdx,
whereas the moment of inertia scales asdx2, there is no
inertial term in this equation.! The net force on an elemen
gives its acceleration

rA
]2u

]t2
5

]F

]x
, ~120!
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where u is the bending displacement andA is the cross-
section area. The momentM is given by the moment of the
tensile stresses due to the extension and compression o
beam from its curvature

M52EI
]2u

]x2
, ~121!

whereI is the areal moment of inertia of the beam around
midline normal to the displacement. These equations
gether give the equation of motion

]2u

]t2
1

EI

rA

]4u

]x4
50. ~122!

The dispersion relation is quadratic,v5ak2 with a
5AEI/rA. For a rectangular beamI /A5d2/12 with d the
thickness of the beam in the direction of the displaceme
As we saw in the previous section, this reproduces the lo
wavelength limit of the acoustic bending modes calculated
thin-plate theory@Eq. ~91! for the in-plane mode and Eq
~107! for the flexural mode#.

At a frequencyv, as well as the propagating modes
wave number6Av/a, there are also evanescent modes w
decay rate6Av/a: the modes localized at the junction an
decaying to6` must be included in the mode transmissi
problem.

For the bending mode with displacement normal to
plane the dispersion relation is the same in the bridge
cavity. Thus for an incident waveei (kx2vt) in the bridge with
k5Av/a we have

u5H eikx1re2 ikx1d2ekx x,0,

teikx1d1e2kx x.0.
~123!

At the junction we require continuity of the displacementu,
the rotation angle]u/]x, the total moment2EI]2u/]x2, and
the total force2EI]3u/]x3. This gives the matrix equation

F 1 21 1 21

1 1 i i

1 2h 21 h

1 h 2 i 2 ih

GF r

t

d2

d1

G5F 21

1

21

1

G , ~124!

whereh5I c /I b5B/b is the ratio of the appropriate momen
of inertia for the cavity and bridge. In the limit of largeh the
solution is easily found to be

r 5 i , ~125a!

t54/h, ~125b!

d252~11 i !, ~125c!

d152~12 i !/h. ~125d!
4-15
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For the bending mode with displacements in the plane
the plate the dispersion relation is different in bridge a
cavity. For frequencyv the wave numbers in the bridge an
cavity arekb ,kc with

kc /kb5~ab /ac!
1/25~b/B!1/2. ~126!

On the other hand the ratio of the moments of inertia is

I c /I b5~B/b!3. ~127!

Thus the continuity of the displacementu, the rotation angle
]u/]x, the total moment2EI]2u/]x2, and the total force
2EI]3u/]x3 gives the matrix equation~writing h̄5AB/b)

F 1 21 1 21

1 h̄21 i i h̄21

1 2h̄4 21 h̄4

1 h̄3 2 i 2 i h̄3

G F r

t

d2

d1

G5F 21

1

21

1

G . ~128!

In the limit of largeh̄ the solution is

r 5 i , ~129a!

t52/h̄3, ~129b!

d252~11 i !, ~129c!

d152/h̄3. ~129d!

With these expressions in both cases we have atx50 to
leading order inh21 or h̄21

u50, ~130a!

]u/]x50, ~130b!

]2u/]x2522~11 i !k2, ~130c!

]3u/]x3522~11 i !k3, ~130d!

so that the displacementsu and the angle]u/]x tend to zero,
but the corresponding stresses are large. Note that altho
the force and moment are out of phase for the single w
ei (kx2vt), because of the evanescent waves near the junc
they are in phase at the junction planex50. Equations~130!
become the zeroth-order input for the radiation calculation
nonzero wave number.

3. Torsion modes

The long-wavelength limit of torsion waves is describ
by the one-dimensional wave equation giving the angu
acceleration in terms of the torque

I
]2u

]t2
5C

]2u

]x2
. ~131!

HereC is the torsional rigidity giving the torque on a sectio
due to the twistt5]u/]x
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torque5Ct. ~132!

It is given by16

C54mE x dxdy, ~133!

wherex satisfies the equation in the cross section

¹'
2 x521 ~134!

and x50 on the boundaries. The form of the solutionx is
the same as the profile of the flow of a viscous fluid throu
the section andC is then proportional to the integrated flux
For the thin-plate geometry with thicknessd and width b
@d, the value ofC is 1

3 md3b and value ofI is 1
12 db3, so that

the ratio of propagation speeds in bridge and cavity is ag
the width ratioh5B/b.

It is interesting to evaluate the stress distribution for t
thin plate. The stresses in the (y,z) section are given in terms
of x by16

syx52mt]x/]z, ~135a!

szx522mt]x/]y. ~135b!

The solution forx is analogous to Poiseuille flow, so that

x5
1

8
~d224z2! ~136!

except within a distanced;d from the side wall, wherex
must decrease to zero. Thus there is a distributed stress
ing in they direction

syx.22mtz ~137!

and a stress in thez direction that is effectively localized
~within a distanced) at the edge

szx.
1

4
mt~d224z2!d~y2b/2!. ~138!

This localized stress corresponds to the corner forces,
~98!, in the thin-plate theory.

For an incident torsion waveu5ei (kbx2vt) in the bridge
for x,0 we have incident and reflected waves

u5~eikbx1re2 ikbx!e2 ivt ~139!

and forx.0 a single transmitted wave

u5teikcxe2 ivt, ~140!

where kc /kb5B/b. The matching of the angular displace
mentu and torqueC]u/]x for an incident wave gives

11r 5t, ~141a!

ikbb~12r !5 ikcBt ~141b!

so that

t5
2

11h2
, r 52

h221

h211
, ~142!
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with h5B/b. In the limit h→` we find r→21, t→0, im-
plying u(x50).0 and the stressC]u/]x.2ikCe2 ivt.

C. Transmission coefficient for smallb

In this section we calculate the small wave-vec
asymptotic limit of the transmission coefficient from the fo
acoustic modes of the beam into the cavity. The method
lows that of Sec. II B 2. Thus we calculate the radiation fro
oscillating stressess(y)e2 ivt on the edge of the cavity. Th
stresses are calculated as the stresses arising on the en
the bridge for zero displacement boundary conditions, as
lows from the analyses in the previous section of the mo
at infinite wavelengths coupling into a cavity of finite widt
For the long-wavelength value of the transmission coe
cients, only the radiation by the integrated stress*s(y)dy for
the even-parity modes, or the integrated first mom
*s(y)ydy for the odd-parity modes, is needed. The Lam
problem of the radiation from surface sources into an ela
half space has been much studied in the literature, for
ample, see~Ref. 17! and the reader is referred there for
more exhaustive discussion of this aspect of the calculat
The details of the calculations are quite complicated, and
reader may choose to skip these sections and refer to
discussion of the results in Sec. IV and the summary in Ta
I there.

1. In-plane compression

For a compressional wave in the bridge of unit incide
amplitude in the displacement, the oscillating end of
bridge acts as a stress source on the cavity face of ampli
2iEk over the source regionuyu,b/2, embedded in the oth
erwise stress-free linex50. The solutions to the wave equa
tions ~79! in the cavity can be written@cf. Eq. ~80!#

u5
1

2pE2`

`

@aT~z!eikTx1aL~z!eikLx#ei zye2 ivtdz,

~143a!

v5
1

2pE2`

`

@2~kT /z!aT~z!eikTx

1~z/kL!aL~z!eikLx#ei zye2 ivtdz, ~143b!

wherekT andkL are thex components of the wave vectors
the transverse and longitudinal components

kT5HAK22z2 uzu<K,

iAz22K2 uzu.K,
kL5HAK2/r 22z2 uzu<K/r ,

iAz22K2/r 2 uzu.K/r
~144!

with K25v2/cT
2 . ~The signs chosen correspond to wav

propagating away or exponentially decaying.! The ampli-
tudesaL,T are fixed by matching to the normal and tangen
stress sourcesSn52Txx

(2) andS t52Tyx
(2) for uyu,b/2
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m̄S r 2
]u

]x
1~r 222!

]v
]y D5Sn , ~145a!

m̄S ]u

]y
1

]v
]xD5S t . ~145b!

In the present caseSn52iEke2 ivt for unit incident wave
amplitude andS t50. Both components of the stress are ze
for uyu.b/2. Taking the leading-order expansion inKb for
the Fourier transform of the source stress as in the sc
calculation, Sec. II B 2, gives for the Fourier components

r 2~ ikTaT1 ikLaL!1~r 222!~2 ikTaT1 i z2aL /kL!5Snb/m,
~146a!

i z~aT1aL!1~2 ikT
2aT /z1 i zaL!50. ~146b!

These equations are readily solved foraL,T from which we
can calculateu(x50) for unit driving stress

u~x50!

Sn
52

r 2b

m̄

i

pE0

`kL~j!

Fo~j!
dj, ~147!

wherej5r z/K is they-wave vector scaled by thelongitudi-
nal wave numberK/r 5v/cL ,

F0~j!5~2j22r 2!214j2kT~j!kL~j! ~148!

and

kT5HAr 22j2 uju<r ,

iAj22r 2 uju.r ,
kL5HA12j2 uju<1,

iAj221 uju.1.
~149!

@This result is analogous to Eq.~123! of Miller and
Pursey17 who calculate the average displacement at the a
ture per unit oscillating stress for aline on a three-
dimensional half space. Indeed we can use their result if
express it in terms of the ratio of wave speeds, and the ela
constantm which retains its significance unchanged betwe
the two geometries. The translation from their~MP! notation
is then ux,M P→(v/cL)ux , aM P→(v/cL)b/2, mM P→r ,
c44,M P→m̄. Note carefully that the usage of ‘‘m ’’ is different
in their work and ours. We have also taken the leading-or
term in vb/cL by making the replacementei jy→1 for uyu
,b/2.#

For unit incident wave in the beam the longitudinal stre
at the aperture is 2iEke2 ivt and the power radiated i
1
2 b Re(2u̇Sn* ). In the incident wave the stress isiEke2 ivt

and the velocityu̇x is 2 ive2 ivt so that the incident power is
1
2 bEvk. The transmission coefficient is therefore

T0~v!54~kb!F 4

p

~11s!

~12s!
ReE

0

`kL~j!

F0~j!
djG , ~150!

where we have usedE/m̄52(11s) andr 252/(12s). The
various contributions to the the integral are easily underst
in terms of the different waves radiated into the cavity. R
member thatj is they-wave number of the radiated waves
units of kL . There are contributions to the integral for
,j,r corresponding to the radiation of transverse and l
gitudinal waves over all angles. In addition there is a con
bution from the residue of the pole atF0(j)50 which cor-
4-17
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responds to the radiation ofedgewaves. Miraculously, the
quantity in the square brackets numerically evaluates to
independent ofs in the allowed range21,s, 1

2 , so that

T0~v!54kb. ~151!

2. In-plane bending

For an incident bending wave with unit displacement a
plitudev in they direction there are two sources of radiatio
into the cavity: the oscillating moment 2A2EIk2e2 ivt and
the oscillating shear~tangential! force 2A2EIk3e2 ivt over
the source widthb in the cavity wall. The moment can b
described in terms of the normal stress 2A2Ek2e2 ivty since
*y2dy5I . The tangential force has an additional power
k;Av compared to this, but the radiation efficiency of t
normal force is reduced by a power ofkcb with kc the wave
number of a propagating mode in the cavitykc;v/cT , since
the two halves of the radiation source cancel at leading or
This means that the contribution of the normal stress to
power radiated is higher order inv for smallv, and may be
neglected.

The analysis proceeds as in the previous section. We a
use Eqs.~145! but now with S t52A2E(I /b)k3e2 ivt and
Sn.0. This gives the equations for the mode amplitudes

r 2~ ikTaT1 ikLaL!1~r 222!~2 ikTaT1 i z2aL /kL!50,
~152a!

i z~aT1aL!1~2 ikT
2aT /z1 i zaL!5S tb/m̄, ~152b!

which can be solved to yield the response to leading ord

v~x50!

S t
.2

r 2b

m̄

i

pE0

`kT~j!

Fo~j!
dj. ~153!

@This result is analogous to Eq.~124! of Miller and
Pursey.17# This gives the average power radiated to lead
order in smallv

Prad5
1

2
b Re~2 v̇S t* !5

1

2
b~2A2EIk3/b!2Re~ ivv/S t!.

~154!

For the incident wave of unit amplitude we have

~u,u8,M ,F !5~1,ik,EIk2,iEIk3!ei (kx2vt) ~155!

so that the average incident power is

Pinc5
1

2
Re@2 iv~Fu* 1Mu8*!#5vEIk3. ~156!

The ratio gives the transmission coefficient

To~v!5
1

3
~bk!3F 4

p

~11s!

~12s!
ReE

0

`kT~j!

F0~j!
djG . ~157!

Again the quantity in the braces turns out to be unity, so
have
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To~v!5
1

3
~bk!3. ~158!

3. Flexural modes

The flexural displacementw(x,y) for a wave at frequency
v satisfies the equation

¹4w5K4w, ~159!

with K25Ard/D v, cf. Sec. III A 2. Expanding the cavity
solution in transverse Fourier modes

w~x,y!5
1

2pE2`

`

w̃~x,z!ei zydz ~160!

the Fourier amplitudew̃ satisfies

~]2/]x22z2!2w̃5K4w̃. ~161!

The solutions arew̃;eikx with

k256K22z2. ~162!

Solutions corresponding to a wave propagating away fr
the source atx50 or exponentially decaying to1` are
given byk6 as

k15 iAK21z2 ~163!

and

k25HAK22z2 z2,K2,

iAz22K2 z2.K2.
~164!

Thus the solution in the cavity can be written

w~x,y!5
1

2pE2`

`

@w̃1~z!eik1x1w̃2~z!eik2x#ei zydz.

~165!

The sources atx50 are a momentM (y) and an effective
force per unit lengthV(y),

M ~y!52DS ]2w

]x2
1s

]2w

]y2 D , ~166a!

V~y!52DS ]3w

]x3
1~22s!

]3w

]x]y2D
1b21@Fc~b/2!1Fc~2b/2!#, ~166b!

with Fourier transformsM̃ (z) andṼ(z). The last two terms
in the second equation are the corner forces. Matching th
boundary conditions gives
4-18
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@K21z2~12s!#w̃1~z!2@K22z2~12s!#w̃2~z!

52M̃ ~z!/D, ~167a!

ik1@K22z2~12s!#w̃1~z!2 ik2@K21z2~12s!#w̃2~z!

52Ṽ~z!/D. ~167b!

The average power radiated is

P52 K E ẇ~x50,y!V~y!1 u̇~x50,y!M ~y! dyL
t

,

~168!

with u52]w/]x the tilt angle and the dot denoting a tim
derivative. For oscillationse2 ivt the average over time give

P5Pw1Pu

52
1

2
v ImF E w~x50,y!V* ~y!dy

1E u~x50,y!M* ~y!dyG . ~169!

Evaluating the first integral in terms of Fourier expansio
we find the power radiated by the force

Pw52
1

4p
v ImF E

2`

`

dz@w̃1~z!1w̃2~z!#Ṽ* ~z!G .
~170!

As in the scalar case, the imaginary part of this integral c
responds to the excitation of propagating waves for wh
z,K and we may evaluateṼ(z) to lowest nonzero order in
Kb

Ṽ~z!5E
2b/2

b/2

dyV~y!e2 i zy.V02 i zV11•••, ~171!

with

V05E dy V~y!, ~172!

V15E dy yV~y!. ~173!

We only keep the second term for antisymmetric sources
which V0 is zero. Note thatV0 is the total force normal to the
plate, andV1 is the torque about thex axis, and these can b
evaluated from macroscopic arguments.

Similar arguments forPu give

Pu5
1

4p
v ImF E

2`

`

dz@ ik1w̃1~z!1 ik2w̃2~z!#M̃* ~z!G ,
~174!

with

M̃ ~z!.M02 i zM11•••, ~175!
08532
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with M0 , M1 the zeroth and first moments ofM over the
bridge end. Now we can calculate explicit results for t
bending and torsion modes.

a. Bending mode.From Eq.~130! we see that an inciden
wave of unit displacement amplitudeei (kx2vt) in the bridge
gives oscillating sources on the edge of the cavity

M052A2D~12s2!bk2eip/4e2 ivt, ~176!

V052A2D~12s2!bk3eip/4e2 ivt. ~177!

Note that we are using the macroscopic formulation to der
these expressions. It is somewhat subtle to directly use
expressions, Eq.~166!, since they dependence of the mod
structure cannot be ignored. We have verified that these
pressions are reproduced using the long-wavelength limi
the mode structure given by solving Eqs.~101! and ~102!.
Now definingj5z/K and

w̃6~z!522A2beip/4u6~j!, ~178!

using the dispersion relationk25K2/A12s2, and then
matching to the sources gives

@11j2~12s!#u12@12j2~12s!#u25~12s2!1/2,
~179a!

2A11j2@12j2~12s!#u12 iA12j2@11j2~12s!#u2

5~12s2!1/4. ~179b!

The power radiated is

P5vDb2k2K2~12s2!
2

p
ImF E

2`

`

~u11u2!~12s2!21/4

2~2A11j2u11 iA12j2u2!djG . ~180!

Normalizing by the incident powerPi5vDbk3(12s2)
gives the transmission coefficient

T0~v!5kbI1~s!, ~181!

whereI 1 is the integral

I 1~s!5A12s2
2

p
ImE

2`

`

@~u11u2!~12s2!21/4

1~A11j2u12 iA12j2u2!#dj. ~182!

For s50.33, evaluatingu6 from Eq. ~179! we find

I 152.3 ~s50.33!. ~183!

b. Torsion mode.A unit amplitude modeu5ei (kx2vt)

gives the oscillating torque source

t54Db~12s!ike2 ivt. ~184!

Here the wave number in the beam is given by@cf. Eq.~110!#

kb5
1

2A6~12s!
~Kb!2, ~185!
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TABLE I. Long-wavelength properties of the modes of a thin beam. See text for the details.

Mode v(k→0)/cTk v1 /(pcT /b) To(k→0) To(v→0),z5vb/cT

Compression A2(11s) A 2

12s

4kb
2A 2

11s
z

Torsion 2d/b 8.014

A~12s!
S d

bD I 2kb
1
2I2SbdDz

In-plane bend A11s

6
kb

1 1
3 (kb)3

1
3S 6

11sD3/4

z3/2

Flex bend A11s

6
kd

2.886

A~12s!
S d

bD I 1kb
I 1S 6

11s D 1/4S b

dD 1/2

z1/2
m
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with K25Ard/Dv as before. The torque, Eq.~184!, corre-
sponds to a force source term given by a nonzero first
mentV1 of the tangential force

V15
2Db2K2A12s

A6
. ~186!

This gives a source term on the right-hand side of Eq.~167b!
Ṽ(z)52 i zV1 and the source termM̃ in Eq. ~167a! is zero.
Now defining

w̃6~z!5
2b2A12s

A6
u6~j! ~187!

with j5z/K from Eq. ~167! we find u6 satisfies

@11j2~12s!#u12@12j2~12s!#u250, ~188a!

2A11j2@12j2~12s!#u12 iA12j2@11j2~12s!#u2

5j. ~188b!

Solving these equations foru6 and sow̃6 , substituting into
Eq. ~170! for the power radiated (Pu does not contribute for
this mode!, and normalizing by the incident powe
vDb2K2A12s/2A6 yields the transmission coefficient

T0~v!5kbI2~s!, ~189!

whereI 2 is the integral

I 2~s!5~12s!
4

p
ImE

2`

`

~u11u2!j dj. ~190!

For s50.33, solving Eq.~188! for u6 yields

I 250.6 ~s50.33!. ~191!

IV. APPLICATIONS AND DISCUSSIONS

The results for the long-wavelength properties in a th
plate beam of widthb and thicknessd are brought together in
Table I. The second column gives the small-k dispersion re-
08532
o-

-

lation in terms of the propagation speedcT of the in-plane
shear wave in a thin plate, which is the same as the sh
wave speed in the bulk medium. The third column gives
frequency cutoffv1 of the lowest waveguide mode with th
same transverse parity symmetry as the acoustic mode~this
would be 2D in the scalar model!. The fourth column ex-
presses the smallv,k energy transmission coefficientTo of
the acoustic mode in terms of the wave numberk in the
bridge and the widthb of the bridge. This is useful in con
sidering theQ of the fundamental vibration modes of th
beam for whichk is of orderp/L with L the length of the
beam. The quantitiesI 1 and I 2 are Poisson-ratio-depende
numbers defined by Eqs.~182! and ~190! and take on the
valuesI 152.3 andI 250.6 for s5 1

3 . Finally, the fifth col-
umn reexpresses the smallv,k dependence of the energ
transmission coefficientTo in terms of the frequencyv. This
form is particularly useful to estimate the reduction from t
universal thermal conductance at low temperatures due to
strong scattering of the long-wavelength modes by an ab
junction.

A. Implications for heat transport

The low-frequency asymptotic limit of the transmissio
coefficient To(v→0) allows us to calculate the low
temperature variation of the thermal conductivity. If we wri
the dependence as

To~v→0!5A~vb/cT!p ~192!

then relative to the universal low-temperature one-mo
valueK/Tuu5p2kB

2/3h we have for each acoustic mode

K/T

K/Tuu
5AS kBTb

\cT
D p 3

p2E0

` x21pex

~ex21!2
dx, ~193!

where the prefactorA for each mode can be found from
Table I. The integral is just somep-dependent constant. Us
ing the expressions in Table I the result can be written
terms of the frequencyv1 cutoff of the first waveguide mode
of the corresponding symmetry
4-20
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K/T

K/Tuu
5BS kBT

\v1
D p

. ~194!

The prefactorB is a numerical constant that depends on
Poisson ratios, but not on geometrical factors such asd/b.
Since the thermal excitation of the waveguide modes occ
for kBT*0.23\v1 ~cf. the plot for the scalar model in Fig
8! this expression indicates to what degree the plateau
K/T becomes apparent as the temperature is lowered an
waveguide mode freezes out, before the reduced trans
sion coefficient at small frequencies begins to lowerK/T to
zero. The ideal low-temperature universal value ofK/T will
be more evident for smaller powersp. ~As an example of this
consider the comparison of the scalar results in Fig. 8:
solid curve showsK/T for the boundary conditions leadin
to p51, whereas the short-dashed curve is the results
boundary conditions leading top53.! This suggests that th
compression and torsion modes will give contributions
K/T curves similar to the result for the stress-free sca
model in Fig. 8, without a well-defined plateau at low tem
peratures~all have p51), and the in-plane bend mode (p
5 3

2 ) will probably have no indication of a plateau. On th
other hand for the flexural-bend mode (p5 1

2 ) the transmis-
sion coefficient increases more rapidly with increasing f
quencyTo;Av/v1. This will lead to a more rapid increas
in K/T towards the universal value before significant exci
tion of additional modes occurs atT;\v1 /kB , leading to a
more pronounced plateau. It should be noted that for
mode the plateau inK/T only develops at very low tempera
tures in the thin-plate limit, reduced from the simple estim
\cT /kBb by the ratiod/b of the thickness to the width of th
beam.

B. Implications for Q

Using the third column of the table and Eq.~10! for Q we
get the simple estimatesQ;L/b for the fundamental com
pression mode, torsion mode, and flexural-bending mo
andQ;(L/b)3 for the in-plane bending mode. Only for th
in-plane bending mode is the isolation of the bridge mo
ro

ur

ys

p
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from the supports sufficiently strong to give a largeQ for
accessible geometries~e.g.,L/b,100). The strong isolation
of this mode is easy to understand physically: the wide s
ports are very rigid against bending motion in the plane.

In many experiments on mesoscopic oscillators, mo
other than the in-plane bending modes are used, and va
of Q significantly higher than the value suggested by
geometric rationL/b are obtained. One way this is done is
use more complicated geometries, such as compound
sional oscillators arranged so that the amplitude of vibrat
in the bridge supports is reduced. Also, in oscillators at lar
scales it is relatively easy to produce more rigid supports,
example by fabricating a bridge or cantilever making
abrupt junction to a three-dimensional support, which c
also be of a different elastic material, both of which w
reduce the coupling to the support modes. In mesosco
oscillators, where the geometry is typically etched out o
single material, and undercutting by the etch comprises
tempts to make an abrupt junction to a three-dimensio
support, our estimates of the coupling will be more approp
ate.

Our estimates ofQ suppose that all the energy commun
cated to the support modes is lost from the energy of
oscillator. This is not necessarily the case, for example, if
support material is also of sufficiently low loss and isolat
from the rest of the experiment. However, our results
show that when the bridge-support coupling is large, it
important to consider the dissipation properties of the s
port structures as well as the bridge, cantilever, or other
cillator that is the obvious focus of attention.
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20The Rayleigh-Lamb equations usually occur in the somewhat
ferent context of the analysis of the modes in a plate which
considered infinite in thexy plane, with propagation in thex
direction and no dependence on they coordinate. The wave
numbersxT,L then give the variation across the thickness of
plate. The equations take the same form, with the wave sp
ratio r given by the expression for two-dimensional elastic
theory,r 5A2(12s))/(122s). For example Rego and Kircze
08532
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now ~Ref. 2! plot dispersion curves for these modes across
thickness of an infinite plate.

21The sign convention for the momentsMx ,M y is thatMi is posi-
tive if it tends to produce compression in the negativez side of
the plate. The angular displacementsux ,uy are defined with the
same convention. This is the usual definition in the elastic
literature~Ref. 18!.
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